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Literature review on vessel detection 

1 INTRODUCTION 

This report provides an overview of available literature on the subject of vessel 
detection in Synthetic Aperture Radar (SAR) imagery.  The review was carried out as 
part of the EU-funded DECLIMS project, which is aimed at evaluating different 
methods for monitoring activities of fishing vessels, using spaceborne SAR. 
 
Ship detection in SAR imagery has become an important routine application in some 
countries. To illustrate the topics of interest, some examples of images with ships and 
wakes are given below.  Figure 1.1 shows an early example of ships off the Swedish 
west coast in very stratified waters. The image was one of the fist ERS-1 images 
acquired in Scandinavian waters. Besides observing the ships themselves, wakes can 
be detected in this image. Figure 1.2 and Figure 1.3 show examples from ENVISAT 
acquired over the North Sea and Skagerrak. The first case indicates that in light to 
moderate winds, it is sometimes possible to observe oil spills from ships.  The last 
case is an example of ENVISAT’s Advanced SAR (ASAR) new cross-polarized 
channel. This channel is good for observing ships, but not wakes, for low incidence 
angles. 
 

 
Figure 1.1 ERS-1 image from 1991 showing ship wakes behind vessels. 

The dominant wake feature in the image is most likely 
internal waves set up on a boundary between surface water 
and deeper water with higher density. © ESA. 
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1  

 
Figure 1.2 

 is 
s. In addition, it is possible to see oil 

spill behind one of the vessels. 

Image of the North Sea on June 9, 2004. The data is recorded with 
ENVISAT ASAR AP mode with VV-polarization and sub-swath IS2. It
possible to detect several vessel
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Figure 1.3 ENVISAT image of Skagerrak outside Arendal, Norway May 4, 2004. 

The data is recorded in sub swath IS1, and it shows that for steep 
incidence angles, data collected in VH-polarization provides good 
contrast between vessels and the ocean. 

 
The body of accumulated literature on vessel detection and related topics is vast. In 
order to provide some structure to the review, we have organised it according to some 
key questions and issues that have been presented in the literature body: 
 
1. Generic papers – discussing overall approaches to fisheries and vessel traffic 

monitoring, marine applications of SAR data in general and various other papers 
not easily categorised. 

2. Signatures and characteristics – including measurement trials, campaigns, as well 
as modelling of wakes and of ship radar signatures. Here we also included at least 
one paper on statistical properties of ocean images. 

3. Target and wake detection – descriptions of approaches for detecting ships and 
wake-like features in SAR images 
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4. Wake detection – primarily descriptions of approaches to detecting wake-like 
features in SAR i

5. Target detection – primarily descriptions of s for target 
detection 

6. Classification – primarily reports on exploitation of atures for 
determination of classes of various ships 

7. HF radar – discussing High Frequenc
 
Some papers may of course be regarded as an one of the above 
categories, in which c ategoris what arbitrary. The 
heading under which each paper appears is as
choice.  As some papers address both ship and wake detection, we have
to use a separate catego  and wake detec

mages 

ase the c

ry for ship

 different algorithm

 target sign

re th
e

ly b

y radar used for ship detection. 

 belonging to m
ation m

o
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ay see

 therefore pu

tion (Section 4). 

ed on subjective 
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2.2 Absolute Calibration of ASAR Level 1 Products Generated by PF-
ASAR (50) 

The paper describes calibration of the different ENVISAT ASAR products in 
connection with radar backscattering. RCS (Radar Cross Section) depends on the 
object’s size, shape, orientation, the surface of reflection, as well as wavelength and 
polarization of the incoming signal. The relationship

0 0
 between the value of the pixels 

N), the radar strength (β ), and the RCS (σ ), can be written as: (D

 0
0

02 )(
)sin(

σθ
θ
σβ ⋅=

⋅
=⋅= KKKDN  (2.1)  

The constant K is the absolute calibration constant, which is obtained from 
measurements over precision transponders. It depends on the processor and the 
product type, and can change from one signal to another for the same product type. 
The RCS for detected products can be obtained by using this relationship:  
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L and M are the number of line and column, respectively, in the image. The average 
RCS for a small area can be obtained by using an average for N pixels within the area:  
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cidence angle, θd: If the area is very small, it is possible to use an average in
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The logarithmic RCS (dB) is given by: 
 

 [ ] )(log10 0
10

0 σσ ⋅=dB  (2.5)  

All detected ASAR products are delivered with radar strength β0, i.e. antenna pattern 
and reflection loss in range direction is corrected, but no correction is done for the 
incidence angle. 

2.3 Canadian Progress Toward Marine and Coastal Applications of 
Synthetic Aperture Radar (84) 

Canada has developed SAR applications that require imagery on operational schedule. 
RADARSAT-1 is used for the moment, and RADARSAT-2 is being developed for 

ture use. Sea ice surveillance is a near-real-time application, and other marine and 
coastal roles are emerging, for example ship detection and coastal wind field retrieval. 
CIS (Canadian Ice Service) uses RADARSAT-1 data regularly as its primary data 

fu
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image modes and ocean sea states. Using in situ information and empirical models, 
the
been v
inform
new sa
operati
 
27 
with su  and location) to test the 
algo
fisherie ational Defence) Aurora surveillance 
flight reports, and other dedicated field programs. 174 ships ranging from 20 to 294 m 

itions (0.4 

.4 CDPF/OFW Products from MARCOT (83) 

he report describes the Ocean Features Works
Processing Facility (CDPF) used in connection with MARCOT, which is a 

ent of National Defence (DND) training exercise. It occu
anada’s east coast. RADARSAT-1 SAR images from th

Fast Tracs transportable ground station were analyzed manually for ship detection, 

describes the o c rrence of these problems as w
of the problems. A combination of adjusting the OFW ship detection parameters and 
sing an alternate output Look-Up Table (LUT) to reproc

rce. The OMW (Ocean Monitoring Workstation) has, among others, developed 
tic algorithms for ship detection, and validated them by using a broad range of 

 capability of the ERS (European Remote Sensing) and RADARSAT-1 SARs have 
alidated to provide wind-vector data. Algorithms for extracting wind-vector 
ation have been developed and are now being tested. RADARSAT-2 and other 
tellites will provide increased frequency of radar coverage, selectable modes of 
on, and more accurate information retrieval.  

RADARSAT-1 SAR images, acquired in 1996 and 1997, have been used together 
pporting ship validation information (name, type, size,

rithms. The validation information was obtained from Canadian Coast Guard 
s surveillance, DND (Department of N

were validated using different RADARSAT-1 beam modes and wind cond
to 13.2 m/s). RADARSAT-1 modes with large incidence angles are favourable for 
ship detection, i.e. fine beams 1 to 5, standard beams 4 to 5, and wide beam 3. 
Standard beams 1 to 3, and wide beams 1 and 2 are not favourable for ship detection 
due to the small incidence angles. The detection rate was 77% for less favourable 
modes for ship detection, 97% for recommended modes for ship detection, and 81% 
for two ScanSAR narrow far mode images. An overall detection rate of 84% was 
obtained. 

2

T tation (OFW) and the Canadian Data 

Departm rs every year off 
C e MacDonald Dettwiler’s 

within one hour of data acquisition. The RADARSAT-1 data was also processed 
through the CDPF at Gatineau Satellite Station (GSS), as well as automatically on the 
OFW, also installed at GSS. The early CDPF/OFW reports showed that there were 
some problems with large, dense groups of targets in the image far range and near 
coastal regions. The problems can be categorized into two groups: 1) image saturation 
by an inappropriate output LUT and 2) image saturation caused by Doppler estimation 
problems. The report c u ell as mitigation 

u ess the data helped to solve 
the problems. The data limitations could not be overcome in some cases. The 
following recommendations are given in the paper (citation, pp. 3-4): 
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1 t would be useful to include a significantly reduced reso. I lution image with the 

 to OFW until after 
data QC (Quality Control) is required.  

2.5

pproach. The first method uses the Mean of Variance of the 
ata (MV method) and equates them with their equivalent theoretical expressions. The 

OFW product to allow contextual evaluation in the event that the ship product 
appears to be unusual 

2. It is acknowledged that changes in CDPF Doppler estimation algorithms are in 
progress. However, a limiting property of the data was the inaccurately 
estimated Doppler centroid, which occasionally resulted in Doppler 
ambiguities in the coastal zone. As such improved Doppler estimation is 
required. Furthermore, a means to adjust the Doppler centroid polynomial for 
ScanSAR reprocessing is needed. 

3. The output LUT need to be improved and/or the dynamic range of CDPF 
products, especially ScanSAR, needs to be increased. 

4. A means to delay electronic delivery of CDPF products

 Comparison of Parameter Estimators for K-Distribution 

Blacknell compares three approaches for parameter estimators with the ML 
(Maximum Likelihood) a
d
second method uses the mean and variance of the log of the data, while the third 
method uses the Mean of Mean of the natural Logarithm (MML method). Results 
have shown that the MV method gives better performance at lower wind speeds, 
while the MML method is slightly more robust at high wind speeds. The expressions 
for the sample mean and variance of data are given by:  
 

 [ ] µ=xE  (2.6) 
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E Var
ro

estimates can ariance, the 
density function’s form and the cumulative probability for the ocean area. Using this 

at n be 
set. The riance of the natural log of the data:  

 is the expectation, while  is the variance operators. Moment estimates can be 
calculated f m the histograms of the sampled data from an ocean area. These 

 then be used to estimate, through the sample mean and v

inform ion, the CFAR threshold for the detection of ships in the sample area ca
second method uses the mean and va

   [ ] [ ] [ ])ln()()ln()()ln()ln( LLxE −+−+= ψννψµ  (2.8) 

 ( )[ ] )()(ln )1()1( LxVar ψνψ +=  (2.9) 

ψ(x) is the digamma function and the superscript, n, is the nth derivative. The third 
method to obtain the parameter estimates is to use the sample mean of the data and the 
sample mean of the log of the data. An ML analysis of the L-look, K-distribution, can 
be used to derive the choice of moments. 
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2.6 Detecting Surface Vessels by RADARSAT (81) 

The paper presents a statistical model, which gives predictions of the ship detection 
performance of RADARSAT-1 SAR. Ocean clutter, image PDF, and ship cross 
section elements are included in the model. Figure 2.1 summarizes the model results. 

swath co d off the coast of Halifax, Nova Scotia in 
It is shown that SCNfar represents a good compromise between ship detectability and 

verage. Data has been collecte
March/April 1996 in a ship detection field program. In situ wind and wave data as 
well as image signatures of known ships were also available. Amazon rain forest 
images were used to calibrate the data to derive antenna patterns and a calibration 
constant. The calibration is accurate to ± 0.5 dB. The relationship between the output 
image and the calibrated cross section is given by:  

 
KG
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0
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⎛
=  (2.10) 

I  is the mean image intensity for the region of interest, G2(θ) is the two-way 

elevation antenna pattern gain, R is the range, θ is the local incidence angle, and K is 
the calibration constant.  
 
There is a risk of underestimating the Radar Cross Section in near coastal regions due 
to small signal suppression, and thus there is a potential calibration error. It is shown 
that the hybrid C-band HH-polarized cross section model is excellent under the test 
conditions, and that the K-distribution is appropriate for RADARSAT-1 ocean scenes. 
The simple cross section model is based upon the ship length alone. It is shown that it 
is within the correct order of magnitude, but it tends to underestimate the ship cross 
section, especially with increasing incidence angle. The model underestimates the 
ship detectability for RADARSAT-1 in most cases. The incidence angle and ship 
orientation dependence are not addressed in detail.  
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Figure 2.1: The ship detection Figure of Merit (FOM) as a function of the incidence 

angle for the different beams and modes on RADARSAT-1.  

2.7 ERS Detection of Soft and Hard Targets at Sea: What Can Be 
Operationalized? (54) 

The paper describes the possibilities of using ERS SAR images for near real time 
ocean surveillance applications such as detection of ships, ship wakes, icebergs, and 
oil slicks. It is shown that most ships can be visualized as bright spots under calm sea 
conditions (0-2 m/s wind speed). Ships longer than 50 m are visible at wind speeds 
above 5 m/s. Ships smaller than 100 m may be lost when the wind speed is above 10 
m/s. Steeper incidence angles give stronger backscatter from the sea. Since ERS uses 
a steep incidence angle, it is not optimal for detection of smaller fishing vessels and 

ic 
variation that il 
slick detection

r

ents the expected performance of the ENVISAT ASAR instrument, 
which provides a diversity of imaging geometry and polarization. Modes are available 

r ship detection at all incidence angles. The swa
km. The performance is examined in terms of geometry, coverage, spatial resolution 
and radiometric characteristics. Based on these results, the applicability of the 

icebergs. Oil slick detection is far more effective because of the large dynam
occurs at low wind speeds as well as the low noise-equivalent σ0. O
 has been developed into a pre-operational level.   

2.8 Expected Performance of the ENVISAT ASAR for Near Real-Time 
Ma itime Applications (44) 

The paper pres

fo th width is limited to less than 100 
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ms and modes for the most important 
pplications, seen from a Norwegian perspective, are 

are recommended to use for ship detection at steep incidence angles. Either AP mode 

 co-polarized 
hannel is best for detection of ship wakes, natural slic

and meteorological features. Figure 2.2 shows that the VH-polarized backscatter is 

 

different beams and modes for near real-time monitoring of the marine environment 
are examined. Recommendations for bea
a given. Cross-polarized channels 

or Image mode are recommended for the outer swaths. The cross-polarized channel 
on ENVISAT is expected to provide good images of ships, while the
c ks, oil slicks, oceanographic 

more than 20 dB below VV. It is not likely that VH-polarized data will give useful 
returns from the ocean surface using ENVISAT. 

 

Figure 2.2 The ocean backscatter depends on the incidence angle, polarization, 
wind speed and wind direction. The figure shows the relationship for 
upwind at 5, 10 and 20 m/s for VV- and VH-polarized data for the 
Image mode. 

 
By using the AP mode with VV and HH, it is expected to obtain further insight into 
Modulation Transfer Functions (MTFs) for wave spectral estimates.  
 
Wide Swath mode, VV-polarized data is recommended for oil slick detection, because 
the signal levels are expected to be above the noise floor under most conditions (see 
Figure 2.3). The resolution is also satisfactory.  
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d 20 m/s. The ocean backscatter is compared to the 
ENVISAT ASAR Wide Swath mode noise floor. 

Vachon’s modified version of Skolnik’s relationship between the RCS (Radar Cross 
Section - 

 

Figure 2.3  The ocean backscatter depends on the incidence angle, polarization, 
wind speed and wind direction. The figure shows the relationship for 
crosswind at 5 an

 

skipσ ) and ship length (l) is used to determine the ship detection 

performance:  

 
)(08.0 θ

σ
R

l skip=  (2.11) 

R is the ratio between measured and expected value of the RCS, while θ is the 
incidence angle in degrees, θ ∈ [15°,45°]:  

 

 

θθ 11.078.0)( +=R  (2.12) 

To be able to calculate the RCS for the smallest ship that is possible to detect, a 
threshold value (T) of the average backscattering or noise floor is used:  

 10/)(min 10 T
arskip

sjø += σρρσ  (2.13) 

ρr and ρa are the resolutions in range and azimuth direction, and σsea is the RCS from 
the sea surface. Table 2.1 shows the smallest detectable ship lengths for selected 
swaths.  
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5 m/s 10  m/s 20 m/s 

Upwind/Crosswind min. ship length [m] VV-polarization 
IS1 74 / 65 88 / 79 124 / 90 
IS4 17 / 13 25 / 17 44 / 28 
IS7 10 / 7 16 / 9  30 / 19 
SS1 174 / 152 215 / 186 306 / 220 
SS5 36 / 26  59 / 35 109 / 68 

Upwind/Crosswind min. ship length [m] HH-polarization 
IS1 70 / 62 87 / 77 122 / 89 
IS4  12 / 10 18 / 12 29 / 19 
IS7 7 / 7 9 / 7 17 / 11 
SS1 162 / 141 204 / 176  291 / 210 
SS5  23 / 16 36 / 22 65 / 40 

Table 2.1 The smallest detectable ship length estimates for selected swaths. 

2.9 Fishing Boat Detection by Using SAR Imagery (19) 

To counteract fish stock collapses, it is necessary to have sustainable fisheries, stable 
extraction rates and stock robustness. Uncontrolled exploitation of the sea and 
industrialization of fishing have often in past years led to fishing stock collapses. The 
paper presents a project, which uses spaceborne SAR for ship detection, that was 
initiated to modernize the control of the Common Fisheries Policy adopted by the 
European Union.  
 
The test region was in international waters in the 3M division of the Northwest 
Atlantic Fisheries Organisation (NAFO) in the area around the Flemish cap. The 
objective of NAFO is “to contribute towards the optimum utilization, rational 

em a”. 
There is ation available on the maritime traffic in the NAFO area 
3M, which m ssels. Using ScanSAR imagery it is shown 

manag ent and conservation of the fishery resources of the Convention Are
 considerable inform

ainly consists of fishing ve
that fishing vessels longer than 35 m can be detected. Comparing the SAR data with 
Vessel Monitoring System (VMS) data showed that it is possible for the inspectors to 
identify these vessels. Thus, SAR data can be used to detect vessels that are not 
subject to the VMS or not using their VMS. Using SAR data can help the surveillance 
aircrafts and patrol vessels can better be coordinated. 

2.10 Hough Transform from the Radon Transform (9) 

The paper presents techniques for application of the Radon transform to lines and 
pixels through examples, as well as an appropriate generalization to arbitrary curves. 
J. Radon developed the Radon transform in 1917, and it is shown that a special case 
of this transform has the major properties of the Hough transform. This provides a 
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natural formalism for further efforts to generalize the Hough transform. The Hough 
transform is useful to find line segments in digital pictures. The two-dimensional 
Radon transform for an arbitrary generalized function F(x,y) defined on the xy plane 
D is given by:  

 { } ∫∫ −−==
D

dxdyyxpyxFFRpf )sincos(),(),( θθδθ  (2.14) 

If θ and/or p remain fixed, then one has a sample of the transform. To get the full 
transform, θ and p vary, so f is determined for arbitrary values of θ and p. The paper 

ore literature on the Radon 

Integrated Use of RADAR Satellites for Fisheries Enforcement 
Operations (88) 

hain has shown promising results for ship 
 RADARSAT-1 ScanSAR Narrow Far (block 

during the 
winter storms. RADARSAT’s Fine Modes and the Standard Beams S6-S7 can be 

gives further references to mathematical literature for m
transform. In addition it gives references to review articles in the area of using Radon 
transform inversion in a digital setting. Simple examples of the use of the transform 
over a line segment and over a pixel are given. Generalizations to more complicated 
curves and regions are given.  

2.11 

The paper presents results from tests and demonstrations of RADARSAT-1’s 
capabilities for detection of fishing vessels. A chain for acquisition, processing and 
analysis of RADARSAT-1 images in Norwegian waters has been created and an 
operational radar satellite image analysis centre has been established. Regular reports 
were generated for use in fisheries enforcement operations in the Barents Sea and 
around Jan Mayen RADARSAT-1 observations are used in addition to aircraft, 
helicopters, and ships to optimise the use of national assets in sovereignty and 
fisheries enforcement operations. The c
detection in Norwegian waters.
averaged to 50 m x 50 m pixel size) is most effective, but it has limitations 

used to estimate the number of fishing vessels in a limited ocean area. 

2.12 Integrating Spaceborne SAR Imagery into Operational Systems 
for Fisheries Monitoring (20) 

The paper shows that there is a good agreement of the vessels’ positions obtained 
from spaceborne SAR imagery and VMS position reports. By correlating the two 
sources of information, information about vessels not using the VMS and ships that 
are not subject to the VMS can be obtained, and surveillance and control can be 
concentrated on these vessels. Detection results can be available to the inspectors two 
hours after the image recording, but it must be planned, because programming of the 
RADARSAT-1 beam requires some time. The West Freugh ground station covers 
southern European waters, while the Mediterranean remains uncovered. The coverage 
problem will be solved with the ENVISAT and RADARSAT-2 satellites.  
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Fishing vessels longer than 26 m have a 92% probability of being detected by 
ScanSAR imagery. ScanSAR and VMS information about position correlate well. 
73% of the vessels in the Flemish Cap and 92% in the North Sea could be identified. 

ngle) is difficult due to sea clutter. Narrow Far imagery only 
affects detection if it is combined with high wind speeds. Image errors are shown in 

ly 

etected ships can be observed and monitored by patrols. RADARSAT-1’s 
standard mode (100 km swath and 25 m resolution) is better than ERS-1 SAR for ship 

zation in 
RADARSAT-1. Increasing the incidence angle increases ship detection probability 

.14 Maritime Use of Satelliteborne SAR (57) 

WEAG (Western European Armaments Group) Euclid RTP 9.1. SAR imaging models 

In the Azores, where spun glass and wooden vessels predominate, it was difficult to 
detect the vessels subject to VMS. The mean distance between the VMS position and 
the detected position was about 0.3 nautical miles. SAR imagery can be used as a 
complementary tool to VMS or other surveillance aircraft on ships not using their 
VMS or not subject to it. SAR imagery gives a real view of the traffic in the area, 
while VMS only gives the positions. The main reasons for not being able to detect 
vessels are incidence angle, image errors, and weather effects. Detection in the near 
swath (low incidence a

bright areas or bright spots at edges of the different beam modes. Reasons for wrong
identifying image noise as a vessel are time difference between image acquisition, 
vessel position report, and low frequency of the VMS.  

2.13 International Fisheries Enforcement Management Using Wide 
Swath SAR (32) 

Wide Swath SAR can be used for surveillance of commercial fishing grounds, help 
detecting illegal fishing activities, and make the use of limited aircraft or patrol craft 
resources more efficient. Many nations with vast economic enterprise zones, for 
example small Pacific Island nations, do not have effective monitoring methods with 
available patrol resources. It is necessary with an efficient method to prevent fish 
stocks to decline and collapse. Wide Swath SAR can frequently monitor large ocean 
areas, and d

detection due to reduced backscattering from the ocean using HH-polari

due to reduced backscatter from the ocean. RADARSAT-1’s fine beam modes (45 km 
swath and 10 m resolution) are best for ship detection performance due to the high 
resolution and large incidence angle. The large incidence angles are best to use for the 
ScanSAR mode (up to 500 km swath and 100 m resolution). But due to the large 
resolution cells, the ship detection performance is not as good as for the standard 
beam modes. An integrated SAR and VMS (Vessel Monitoring System) system is 
able to detect vessels greater than 20 m, and provides global, all weather, day-night 
capability. The system will quickly show vessels that are not using their VMS to 
report their position.           

2

The report describes the results from a work package on maritime use of spaceborne 
SAR, which was proposed and approved as a part of the Norwegian activity under 
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have been reviewed in the paper and simulations of the interaction between satellites, 
ships, and aircrafts has been studied. Some predictions for the future have also been 
one. 

a maritime 
oint of view. The S-band frequency will probably be the best for military use. Spatial 
solution is a key parameter for ship classification and identification (favours X-band 

frequency). Cross-polarization vs. co-polarization is more important than the choice 

d and control (C3), 
nd are expected to play an important role as an enabling technology for ship 

n and response, because it 
is cost-effective and an effective tool for communications in an airborne environment.  

The grou e developed an airborne system, 

d
 
ERS-1 and ERS-2 have mostly been used to perform the experiments. Wide Swath 
ScanSAR is efficient for ocean applications. Sufficient dynamic range is necessary for 
both hard target and soft target detection. Cross-polarized mode is good for hard 
target detection. The radar frequencies, X- and S-band, are acceptable for 
p
re

of radar frequency for ship detection.      
 
Note: Access to this report is limited to participants in the RTP 9.1 project. 

2.15 Mobile Communications Technologies for Ship Detection and 
Response (18) 

The paper reviews useful available technologies for agencies that need to be able to 
respond to ships detected in coastal waters. The focus is mainly on affordable 
commercial civilian technologies available or that could be developed. Mobile 
communications technologies provide communication, comman
a
detection and response scenarios. A low data-rate satellite telephone on an NCR 
Convair aircraft us used to illustrate the practical use of currently available 
technology. It can be used for voice communications for airborne scientific 
experiments as well as for access to the Internet, transfer of meteorological 
information, and radar images. Current developments in mobile communications 
technology, which may be used for these purposes, are also summarized. Low-
bandwidth commercial satellite telephone technology, such as Mobile Satellite 
(MSAT), has given indications to be useful in ship detectio

 
p of authors who have written the paper hav

which is capable of receiving imagery broadcast by the polar-orbiting weather 
satellite in real time in the VHF band. Traditionally, it has been used to transmit low-
resolution weather satellite imagery, but it can also be used to transmit radar and 
radiometer imagery using the analogue transmission format. Higher resolution 
capabilities have been provided with new digital transmission formats, while higher 
data/image transmission capabilities with higher frequency bands have been used for 
real-time broadcast.    

 
 



 35  
 

2.16 Monitoring the Coastal Zone with the RADARSAT Satellite (85) 

 system can be used to extract ocean 
information from RADARSAT-1 images. 187 collocated ships have been identified, 

 detected targets and the 

2.17 NATO Naval Exercises As Observed From Civilian Radar 

Spaceborne SAR data has been used in NATO naval exercises in Norwegian waters 

can provide information about the 
ship’s direction of motion. Ocean features of possible relevance for sonar operations 

 during the 

The report presents coastal zone applications of RADARSAT-1 SAR data, as well as 
guidelines for beam mode selection. The applications ship detection, oil spill 
detection, and wind vector retrieval are considered in detail using the Ocean 
Monitoring Workstation (OMW). The OMW

which shows good agreement between RADARSAT-1/OMW
VTS/GPS/DND (Vessel traffic Services/Global Positioning System/Department of 
National Defence) Aurora ship surveillance data. Larger ships are easier to detect. It is 
shown that larger incidence angles and lighter winds decrease the background clutter, 
which increases the detecting probability. This is consistent with theoretical 
predictions. OMW ship products can be used to cue other operational surveillance 
activities.  

satellites (90) 

for near real-time information (less than 2 hours). ESA’s ERS-1 satellite has been 
used under five major NATO naval exercises: “North Star 1991”, “TEAMWORK 
1992”, “Battle Griffin 1993”, “Strong Resolve 1995”, and “Battle Griffin 1996”. 
Major participating naval vessels were detected at least once during the exercise. SAR 
images with low resolution (about 30 m for typical civilian satellites) have in many 
cases been satisfactory for detection of ships, while full resolution images have given 
more information about the ships. Large transport ships give quite different signatures 
than dedicated military vessels. It is shown that it is possible to estimate the ship’s 
length in many cases.  
 
Ship wakes can also be seen in SAR images. This 

have also been observed. No oil spills were detected in the SAR images
five NATO exercises. 
 
ERS-1 has a steep incidence angle, and this is a limiting factor for detection of smaller 
ships. RADARSAT-1 and ENVISAT will be better to detect smaller ships due to 
more flexible instruments with modes that are better suited for ship detection. For ship 
detection, cross-polarization channels are believed to be optimal, while co-
polarization gives most information about ship wakes and ocean features.  
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2.18 Ocean Applications of RADARSAT (12) 

he paper discusses potential applications by using examT ples from past airborne and 

ed.  

-1 SAR is a flexible and operational system for monitoring dynamic 
coastal zones. The paper describes the Canadian activities in the areas sea ice 

tion. 
The stat t of automated algorithms for these applications are 

.20 Radar Satellites and Naval Operations (86) 

he paper describes the importance of spaceborne SAR. Spaceborne SAR may give 
formation about ships and oceanographic features of importance for naval 

perations. The information is important in tomorrow’s naval warfare, and military 

satellite SARs as well as Space Shuttle sun-glint photographs. It also gives references 
to important papers defining the various applications. RADARSAT-1 SAR gives a 
large volume of radar imagery and has wide and rapid coverage, and is therefore more 
“operational” than previous space mission. Using RADARSAT-1’s broad ScanSAR 
mode, it is possible to image large ocean surface (mesoscale) features, monitor large 
areas for oil spills, monitor coastal areas, and map the surface wind patterns. But this 
mode is limited by the sensitivity, and to be able to study surface waves during storms 
nd smaller-scale oil spills, higher resolution modes are needa

 
It is shown that ships longer than about 30 m can be detected in Seasat SAR images 
with wind speeds less than 5 m/s (calm conditions). Airborne SARs are able to detect 
small coastal fishing vessels. Higher wind speeds make it harder to detect ships due to 
increased sea clutter. Ships travelling at full speeds are easier to detect due to visible 
wakes after the ships. There are three types of wake features visible in SAR images: 
1) the normal Kelvin wide-V bow wake, 2) the narrow-V wake due to short, Bragg-
resonant waves which are slower moving, and 3) the linear turbulent wake along the 
ship’s track where surface waves are disrupted.    

2.19 Operational Use of RADARSAT SAR in the Coastal Zone: The 
Canadian Experience (28)                   

RADARSAT

monitoring (by the Canadian Ice Service), vessel detection, and oil slick detec
us and developmen

summarized. Focus has been on vessel detection algorithms, which have been 
validated over a broad range of image modes and sea states. The future with multiple 
satellites (RADARSAT-1, ENVISAT, and RADARSAT-2) operating simultaneously 
can solve the problem of conflicting use of different imaging parameters for the 
various applications.  
 
29 RADARSAT-1 SAR images have been used in the experiment, which have 
supporting ship validation information such as ship name, type, size, and location. 187 
validation collocations have been identified. The detection rate is 93% for beams that 
are most favourable for ship detection.  

2
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radar satellites will have a clear role. Civilian SAR satellites are also important, and 
apable of producing imagery of military interest. The optical SPOT satellite played 
n important role before and during the Gulf War, and it is to be shown the 

portance of radar satellites in future conflicts and crisis.  

.21 Remote Vessel Detection on the Grand Banks Using Radarsat 
Imagery: Early Results (21) 

he paper presents early results for the ship detection capability using RADARSAT-1 
AR. The first acquisition was composed of three images off the Flemish cap. An 
age in the Standard beam mode (S7) gave optimal coverage and resolution of the 

rgeted area. The study indicated that image processing using the K-distribution is 
xpected to provide improved results in ship detection. The K-distribution improves 
e precision of the ship location (86 % of all targets were detected) and reduces the 

ccurrence of false alarms with 72 %. It is possible to detect ships closer to the 
oastline by performing land masking. Enhancement of the OFW (Ocean Feature 

orkstation), improved synchrony with ancillary data, and standardized Swath 
lanner configuration files give the users a cost-effective ship detection product. It 
an be delivered within three hours after the pass.   

.22 Review of Ship Detection from Airborne Platforms (10) 

he paper summarizes and describes spaceborne and airborne ship detection 
chniques. Detection done from airborne platforms has been the most common 
ethod for surveillance. The two most common sensors for ship detection used are 
arch radar and Side-Looking Airborne Radar (SLAR). Usually search radars are 

sed for detection, while visible, low-altitude passes are used for identification and 
erification. The detection is usually performed manually, while the identification and 
ocumentation are done with video and photographic cameras due to the low cost. 
aser and strobe lights have been used in specialized systems for scene illumination, 
hile infrared sensors have been used to detect ships. SLAR is often used for ship 
etection. The ship detection algorithms are not used due to the positional uncertainty 
 the imagery. SLAR on board aircraft uses radar to first manually detect the ship, 

nd afterwards the vessel is identified visually. In addition determining compliance to 
gislation related to discharge or fishing is also done.  

ynthetic Aperture Radar (SAR) can provide additional useful information about ship 
osition, heading, and speed, as well as relative size and type of vessel under certain 
onditions. The reflection of the ship, which is usually strong because of corner 
flection, and the ship’s wake are used to detect ships. SAR interpretation 

een extensively 
developed for SAR systems on board satellites. Several automatic ship detection 
algorithms have been developed for satellite-acquired data.  
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The sh ’s wake is usually 15 km behind the boat, and is a V-shaped feat
er (sometimes called 

ip ure with less 
sea clutt the turbulent wake). The backscatter from the ship and 

e ship’s wake strongly depends on the wind speed and sea state. It is easier to detect 

 

 

 
 
 
 

th
the Kelvin arms at lower wind speeds. The visibility is also higher with HH-
polarization than with VV-polarization. The minimum size of a vessel that can be 
detected at different wind speeds has been estimated for typical airborne system. The 
numbers are based on similar estimations for satellite systems. Better TCR (Target to 
Clutter Ratio) can be obtained using HH-polarization, while VV-polarization gives 
more information about the sea conditions.  
 
The paper also describes work that has been done by using a combination of sensors, 
for example visible, InfraRed (IR), and SAR. Image recognition analysis has also 
een done.  b

2.23 The Ocean Monitoring Workstation: Experience Gained with 
RADARSAT (15) 

The Ocean Monitoring Workstation (OMW) has been developed to extract marine 
information from RADARSAT-1 SAR ocean images. The system uses state of the art 
algorithms to obtain wind and wave information, information about the vessels, and 
the location of ocean and atmospheric features. The information is formatted, 
interpreted, and transmitted to operational centers on land and at sea. Applications of 
the OMW that have been explored are ship detection, wind measurements, and 
estimates of wave conditions. The three main uses are vessel detection, oil spill 
monitoring, and environmental monitoring. The system overview is given in Figure 
2.4. The Vessel Detection Module detects at least 90% of the vessel targets in a SAR 
image.  
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SAR can reveal many meteorological phenomena that cannot be captured by other 

 swath modes, is that it enables observations of 
weather systems and ocean circulation patterns at synoptic scales. In addition Wide 

r area at 
different kes it 

Enforcement Applications (33) 

ng fisheries 

icate that fishing vessels may be 

 SAR (80) 

The paper presents a statistical approach that is used to detect point targets in a clutter 
background. The model includes ocean clutter, image PDF, and ship cross section 
elements. Previous experience with ERS-1 SAR data was used to derive the ocean 
clutter and image PDF. The model is used to evaluate the expected ship detection 
performance of the RADARSAT-1 SAR as well as comparing the expected ship 

observational methods or models, and they can contribute to understand phenomena 
that may be related to certain meteorological situations. A significant advantage of the 
wide area coverage, over narrow

Swath SAR gives several opportunities over a few days to cover a particula
 incidence angles. The ability to use different incidence angles ma

possible to use the observations for specific applications. Large incidence angles 
should be used for ship detection, while steeper incidence angles should be used for 
ocean surface observations such as ship wakes. Algorithms to reduce data to 
geophysical parameters require access to details of the acquisition and SAR 
correlation process, as well as access to data in other forms than the traditional 
multilook detected image.  

2.25 The Use of Satellite-Based SAR in Support of Fisheries 

The paper presents the use of spaceborne SAR to improve the existi
aircraft and patrol vessel reconnaissance methods. Spaceborne SAR gives unique 
surveillance and monitoring capability. Three different experiments using SAR have 
been defined and implemented to assess the utility for fisheries enforcement 
applications: 
1) SAR and Acoustic Measurements of Fishing Vessels in the Donut Hole Region of 

the Bering Sea. The experiment included detection of fishing vessels and ship 
wake detection. The measurements were done undersea to study the effect of 
blended SAR and acoustic signatures. Results ind
differentiated from other classes of ships because they can have unique acoustic 
signatures.  

2) SAR Measurements of the Columbia River Salmon Habitat. The experiment 
included observations of salmon spawning and nursery habitat. With this 
monitoring toll, large habitat regions can be monitored, which are not patrolled by 
conventional means.  

3) SAR Measurements of Large-Scale Pelagic Driftnets. This experiment assessed 
the capability to detect large-scale pelagic driftnets. SAR observations were not 
done.  

2.26 Validation of Ship Detection by the RADARSAT
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detection performance for the different modes on RADARSAT-1 SAR. Large 

bil
detectio

ADAR  in March/April 1996 off 

ct
wave s
asses odel’s key assumptions is 

e 
conclus

• (i.e. wind blowing towards the 

• 

• es for increasing wind speed 
• 0 0

• 

 sh
Oceano
related, as a rule of thumb: 

 (2.15) 

th
detectio

  (2.16) 

Ic is the
is the o ize, and ρr is the 

round range resolution cell size.  

2.27 

The pa ination with 
the Ocean Monitoring Workstation (OMW) for automatic ship detection. The 

experim RSAT-1 single beam modes 

incidence angle, low wind speed, and finer resolution increase the ship detection 
capa ity of smaller ships. A good compromise between spatial coverage and 

n probability is the ScanSAR Narrow Far mode. Data acquired during a 
SAT-1 SAR ship detection/validation field programR

the coast of Halifax, Nova Scotia is used to quantitatively validate the model 
predi ions. Measurements by buoys of a long time series of wind and directional 

pectra were used together with RADARSAT-1 C-band HH-polarized SAR 
over known ships. Validation of some of the mp

presented. Focus is on the hybrid C-band HH-polarized ocean cross-section model, 
imag probability density function, as well as ship radar signatures. The following 

ions are obtained from the ocean cross-section model: 
The largest σ0’s are for upwind directions 
radar look direction) 
The smallest σ0’s are for (nearly cross wind directions (i.e. wind blowing 
across the radar look direction. 
σ0 increas
σ  for C-band VV is larger than σ  for C-band HH for all wind speeds and 
directions.  
σ0 for C-band HH decreases more rapidly with increasing incidence angle 
than σ0 for C-band VV. They should converge as the incidence angle 
becomes smaller.  

 
The ip weight in tons (D) and length in meters (l) for the Bedford Institute of 

graphy (BIO) fleet and for some of the ships in the MARCOT’95 exercise are 

3/708.0 lD =≡σ 

σ is e RCS of the ship in square meters. The minimum point target RCS for 
n at a chosen probability level is given by:  

rac

 critical image intensity of the relevant PDF (for unity mean image clutter), σ

I ρρσσ 0=

0 
cean’s normalized RCS, ρa is the azimuth resolution cell s

g

Validation of Ship Detection by the RADARSAT Synthetic 
Aperture Radar and the Ocean Monitoring Workstation (85) 

per presents the capability of RADARSAT-1 SAR used in comb

validation has been done using in situ information collected during the field 
ents performed in 1996 and 1997. The RADA
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with large incidence angles are best suited for ship detection. The detection rates for 

averag bination 
dicates reliable ship detection performance.     

2.28 

The paper describes how Synthetic Aperture Radar (SAR) can be used to locate ships 

images
Iosat fo rational Training (MARCOT) and 
NATO Unified Spirit 1998 (US 98). The task of the experiment was to provide 

was off
 

veloped the Ocean Monitoring Workstation (OMW) to enable real-

to 500
informa  the ship’s location, extent of oil spills as well as wind and 

ave fields. The OMW software automatically analyses SAR imagery in 3-5 minutes. 

ground
rate algorithm, which is driven by a 1-look, K-distribution PDF. The automated 

MW has a ship detection rate of 97 % for specific beam modes of RADARSAT-1. 

using a
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nd Aircraft, FFI/Rapport-83/9006, Norwegian Defence Research 

 
(2) Recent Advances in 

ounterdrug OTH Radar Ship Surveillance, Proc DoD Counterdrug Workshop 

 
(3) 

s of Primitive Geometrical Shapes, IEEE Trans on Geosc and Rem 
ens, Vol. 34, No. 3, pp. 793–803. 

(4) 

these modes are 97 %, and 84 % overall. The validation ships used are 120 m long in 
e, and data with low winds are used. The RADARSAT/OMW com

in

Vessel Detection with Wide Area Remote Sensing (14) 

within an exercise area. The main information is from ERS-1 and RADARSAT-1 
. The real-time operational surveillance trial was carried out by Satlantic and 
r the Maritime Command coordinated Ope

locations of the ships within the exercise area in less than one hour. The exercise area 
 the East coast of Canada during June 1998.  

Satlantic has de
mtime i age exploitation and to take advantage of the wide area of coverage. Areas up 
 m x 500 m were used. The OMW ship detection algorithm reduces the 
tion to include

w
It can either be implemented as a stand-alone workstation or integrated directly into 

 station infrastructure. The OMW is essentially a Constant False Alarm (CFA) 

O
The satellite surveillance requirements for the MARCOT/US 98 operations were met 

 combination of satellite, ground station, and the OMW.  
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3.2 Detection of po n ScanSAR data (In Norwegian) (158) 

The thesis uses ScanSAR to analyse point targets. It adds new knowledg

int targets i

e about radar 
tellites, as well as giving good advice on ENVISAT

earlier work at the Norwegian Defence Research Establishment (Forsvarets 

find the accurate threshold for a specific 
lse alarm rate, it is necessary to estimate the speckle probability for the specific 

might be specular for another beam. 
he Rayleigh criterion gives the condition for a smooth surface:  

 

sa ’s possible user areas. Based on 

Forskningsinstitutt - FFI), a threshold value of 10 dB (higher than the value for the sea 
clutter) is suggested to be a reasonable value for ship detection in radar satellite 
images with more than 3 looks. To be able to 
fa
image.      
 
A surface, which is rough for one radar beam, 
T

θ
λ

cos8
<h  (3.1) 

h is the height of the surface variations, while θ is the radar’s incidence angle. 
ENVISAT operates in the C-band with a wavelength of 5.62 cm. The incidence angle 
varies between 18° and 44°. A surface will appear as rough if the surface variations 
are more than approximately 0.7-1.0 cm. Thus, the ocean will almost always appear 
as a rough surface when using radar.  
 
Skolnik’s equation shows how the radar backscatter (in square meters) depends on the 
ships weight displacement in tons: 

 [ ] [ ]tonsntdisplacemesshipmship '2 =σ  (3.2) 

The equation doesn’t give correct values when it is used on radar satellite images, 
which indicates that ships reflect more than what is believed from the equation. The 
RCS (Radar Cross Section) value is larger for larger incidence angles. Oceangoing 
fishing vessels have larger weight displacement compared to the ship’s length than 
navy vessels. Vachon’s equation seems to give the minimum value for the ship’s 
length or expected RCS value for a ship, where D is the ship’s displacement in tons 
and l is the ship’s length in meters: 

 331.2 08.008048.0 llDship ⋅≈⋅=≡σ  (3.3)
7

 

A ship’s RCS depends on the following parameters: 
- Whether the ship is fully loaded or not (especially if the ship is oriented with 

the long side towards the satellite and is situated far away from the satellite in 
the range direction.  

- Ship’s orientation 
- Ship’s building materials 
- Ship’s 3D structure 
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- Ship refl her e 
- lti reflec n (in g  sur

 
Fishing boats are harder to detect due to their size. The radar reflection is largest when 
the ship has its long side towards the rada radar reflection is considerable 
smaller with greate ngle ck  90° ps situated far away in the range 
direction give a lar  RCS compared to the s where the ship is situated closer 
to  in ge d n on’s nal equation seems to give the 
average alue or ecte e ship e ratio between measured and 

alu  the incidence angle in degrees, θ ∈ [15°,45°]:  

 

ectors co enc
Mu tio cludin the sea face) 

r. The 
r a  of atta  (α = - θ). Shi
ger ituation 

the satellite ran irectio . Vach  additio
 v exp d valu for a . R is th

expected v e of the RCS, while θ is

θθ 11.078.0)( +=R  (3.4)  

ive 

measure ions in the incidence angle. Because 

ate lengths of about 55-60 meters in HH-polarization and wind speeds up to 
10 m/s, if the data is processed with 3-look in azimuth and one in range.           

concluded that there is no general relationship between 
displacement and a ship’s length for an arbitrary vessel. When a priori knowledge 
bout the vessel target is not available, the relationship (3.5

The equation shows that ships far away from the satellite in the range direction g
larger measured RCS value in the image. Variation in the average value, which is 

d to be 6 dB, may be caused by the variat
of the changes in the assumptions in Vachon’s equation, it is expected to be able to 
detect smaller ships in the radar images than expected earlier.  
 
If the sea surface is almost still, RADARSAT-1’s S5 mode has a limit of detection of 
approximately 20-25 meters, while the F5 mode seems to be the best for ships around 
8 meters. ENVISAT has better possibilities to detect ships than RADARSAT-1’s HH-
polarization, but RADARSAT-1 has better solution between resolution, incidence 
angle and swath width. ENVISAT’s modes IS3, IS4, IS5, IS6 and IS7 are expected to 
give reliable detection of ships with length larger than 50 meters in HH-polarization 
in wind speeds up to 10 m/s. The SS3, SS4 and SS5 modes are best in the Wide 
Swath mode. These are expected to be able to detect clusters of ships with 
approxim

 
Two new non-linear models relating ship length to displacement are investigated. The 
first model has the form:  

 βαlD =  (3.5) 

while the second model has the following form:  

 2)( lD βα +=  (3.6) 

The investigation 

a ) is as follows:  

 ,   2klD = 60.0,27.0∈k  (3.7) 
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When a priori knowledge is available that the vessels are military navy vessels, the 
constant k is defined as 30.0,27.0∈k . When a priori knowledge is available that 

the vessels are ocean going fishing vessels, the relationship is given by:  

 21.2 60.0,25.0 llD ∈  (3.8) 

Vachon’s equation is useful as a simple and general formula to give rough estimates, 

correlati or larger data sets.  
and the formula (3.7) should also be taken into account. Model 2 seems to give better 

on than model 1 f
 
The results when using the two models on different data sets are given in Table 3.1 
and Figure 3.1. Formula (3.5) holds well for all cases, while model 2 (3.6) gives a 
slightly better correlation for the total data set.   
 

 
Figure 3.1 Model relationships between ship length and displacement for all three 

data sets.  
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Data set Model α β Correlation 
A 1 0.08 2.31 0.9850 
 2 0.19 0.55 0.9769 

B 1 0.64 1.98 0.9649 
 2 0.38 0.76 0.9598 

C 1 0.07 2.31 0.9512 
 2 0.56 -2.64 0.9529 

C ined 1 0.27 2.01 0.9257 omb
 2 1.65 0.52 0.9478 

Table 3.1 Summary of data sets 

3.3 Detectability of selected phenomena over the ocean in digital 
ERS-1 images (In Norwegian) (96) 

FFI has developed an automatic algorithm for detection of ships and wakes in high 
resolution SAR imagery. The algorithm is mainly developed for use in open sea and 

ation. 
This information can be used to derive additional information about the hull 

 2π
wave nu

near land. Due to the noise in the images, low-resolution images have shown 
advantages for detection of some phenomena. Possibilities for detection of icebergs, 
oil spills and ships in low-resolution images are studied. The analysis, as well as 
visual inspection of the ERS-1 scenes, broadens the knowledge for detection of the 
objects. Automatic detection in low-resolution imagery requires low wind speeds. The 
scattering distribution function for dark sea is low, and this will give sufficient 
contrast for a good segmentation result. In the vicinity and within the ice edge, the 
assumptions for the FFI algorithm may change due to the change of possible wakes. A 
description of wakes close to the ice edge compared to FFI’s ship detector is also 
given.    

3.4 Hull Characteristics from SAR Images of Ship Wakes (272) 

The paper presents how SAR images of ship wakes can be used to obtain estimates of 
the Kelvin wake amplitude function (A(θ)), ship speed (V), and ship heading (α). The 
Fourier transform (Z) of the ship’s Kelvin wakes can be used to get the inform

characteristics. The distance between two successive peaks (or valleys) of A(kx), with 
∆kx ≈ /L, is used to estimate L. The relation is given in terms of the fundamental 

mber, k0:   

 2
2

0

0

22 Fn
gL
U

Lk
k xx ππλ

===
∆

 (3.9) 

Fn sform of the magnitude of the slope 
amp u |A| 
sin t racy increases with 
the mber, Fn.  

is the Froude number. The Fourier tran
lit de function |kA(kx/k0)| is used to estimate the ship length (L) instead of 

ce i  tends to enhance the dominant wake length scale. The accu
 longitudinal symmetry of the hull and the Froude nu
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Using A, L, and the draft, H, the HULINV code can be used to calculate offsets ζ(x,z) 
for a general hull such as the WC (Wigley-Cosine). HULINV code is short for Hull 
Inversion code, and was developed at the University of Michigan by Wu (1991). The 
ship’s volume can also be calculated from the information.  

3.5 Instrumented Ship Imaging Using the AN/APS-506 Spotlight SAR 

The paper describes the AN/APS-506 Spotlight Synthetic Aperture Radar System that 

n can be used to model the statistics of the SAR imagery, and 
this paper presents methods for estimating the parameters of the K-distribution. The 

System (154) 

has been developed by the Canadian Department of National Defence. An ocean-
going ship was instrumented with motion sensors, and high-resolution data sets were 
collected using the radar from a full range of aspect angles. Imagery collected during 
the trial is presented, and key aspects to be able to obtain good ship imagery for very 
high-resolution airborne radar systems are described. The paper also presents the 
unique aspects of the AN/APS-506 Spotlight SAR system. It is a significant 
improvement over the existing capabilities of the CP-140, because it allows the 
operator to classify at long range as combatant or non-combatant. It is also a very 
useful tool to classify small ships. 

3.6 K-Distribution (105) 

Parameter estimation is necessary when analysing coherent imagery such as SAR 
images. Parameter estimation makes it possible to characterise the statistical 
properties of homogenous regions for use in segmentation and target detection 
algorithms. K-distributio

K-distribution for a given radar signal X is given by:  
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where p

+L ν 2/)( ⎫

X(I) is the probability distribution function for the image intensity I, L is the 
number of effective independent looks, Γ is the gamma function, and KL-ν(z) is the 
modified Bessel function of order L-ν. ν is an order parameter for the distribution that 
defines the skewness and shape of the tail. Thus, it is important to obtain a good 
estimate for this parameter to be able to set a proper threshold. Above this threshold, 
detected pixels will be expected to belong to a different population with a given 

robability.  p
 
The estimation errors of three moment-based estimation schemes are compared with 
the maximum likelihood estimation errors (calculated from the Cramer-Rao lower 
bound) in the paper. These methods are alternatives to the Maximum Likelihood 
(ML) estimates that only can be calculated by cumbersome numerical techniques. 
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Based on the comparison, recommendations are given on the number of looks and 
which parameter estimation scheme that is best to use. The goal is to obtain near 
optimum estimation performance without being forced to do cumbersome numerical 
evaluations of the ML solution. An estimator based on the Mean and the Variance of 
the data gives large errors, while an estimator based on the Mean of the data and 
Mean of the Log (MML) is almost optimum.  

3.7 Kelvin and V-like ship wakes affected by surfactants (289) 

The paper presents a study of ship-generated wakes and their Radar Cross Section 
(RCS) in SAR images. Ship wakes in light wind and calm sea conditions often appear 
as a bright V with a half-angle of 2 to 3 degrees. The Bragg scattering mechanism has 
been used as a basis to explain this phenomenon. It is believed that the narrow V-
wake is not a part of the Kelvin wake. Alternatively, it is suggested that short 
divergent Kelvin waves may contribute to the V-wake, even though the waves are 

nduced turbulence.  

otic solution. The paper also 
iscusses the radiative, viscous and surfactant-induced decay of the V-wake 

s, the steady Kelvin waves and the ship-induced turbulence.  

mixed with unsteady surface waves, which are generated by ship-i
 
A single layer of hydrodynamic singularities represents the hull of the ship. The 
Green function of a point target moving below a free surface covered by surfactants is 
derived. A closed-form asymptotic solution for the far ship wake is obtained by 
isolating the steady Kelvin waves from the unsteady waves. The corresponding RCS 
is calculated analytically using the closed-form asympt
d
brightness along the arms of the V-wake. Experimental data is used to compare the 
theoretical results. The amplitudes of the short divergent waves do not depend on the 
specific form of the submerged portion of the ship. The amplitudes are larger for ships 
with fuller waterline. The decay of the RCS is weak and the V-wake becomes very 
persistent for relatively large values of the resolution cells. Increasing the ship’s speed 
increases the RCS strongly and leads to a narrower V-form. Both arms of the V-wake 
can be visible for several kilometres in calm water, azimuthal directions and for 
favourable SAR parameters. It seems that the complex V-wake phenomenon is a 
result of the Bragg scattering from a sea surface with many waves, which is disturbed 
by breaking wave

3.8 Neural Processing of Targets in Visible Multispectral IR and SAR 
Imagery (277) 

The paper describes the design and implementation of computational neural systems 
for target enhancement, detection, learning, and recognition. Multispectral infrared 
and SAR imagery have been used. The following motivates the system architecture: 

• Designs of biological vision systems. 
• Drawing insights from retinal processing of contrast and colour. 
• Occipital lobe processing of shading, colour, and contour. 
• Temporal lobe processing of pattern and shape. 
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The paper also describes how discrimination among similar targets and accumulation 
of evidence across image sequences are done. It also shows how 3D target learning 
and recognition from visible silhouettes and SAR return patterns are related. Models 
of contrast enhancement, contour, shading and colour vision can aid target detection 
by enhancing targets in multispectral IR and SAR imagery.  

3.9 Nonuniform Azimuth Image Shift Observed in the Radarsat 
Images of Ships in Motion (207) 

n 
cruising he different slant-range 

o the nonuniform shift, which may be caused by the rolling of 
the ship
observe ct cause of the 
ske n

3.1  by Ferries (201) 

The pa s in the San Francisco Bay. Many wakes 
om high-speed ferries make long waves that are apparently travelling ahead of the 

ich 
makes it possible to measure the water motion by timing the propagation of 

The paper describes nonuniform azimuth image shift of a rigid body, focusing o
ships, observed in RADARSAT-1 SAR images. T

velocities of coherent scatterers across the hull associated with the ship motions cause 
the phenomenon. The identified ship in a SAR image is used to estimate the slant-
range velocity. Then the velocity is compared with the velocity computed from the 
STF (Salvesen-Tuck-Faltinsen) numerical model using the ship’s specification in 
addition to meteorological data. The pitching motion of the ship is the dominant factor 
in the nonuniform image shift. The results are in good agreement when compared 
with the wave orbital velocity. Yawing contribution to the velocity cannot be ignored 
even though it is found to be small. Reasonable agreement is also obtained when 
comparisons are made between the SAR-derived slant-range velocities of two 
unknown ships and the wave orbital velocities. One of the ships investigated exhibits 
image skew in addition t

. Taking into account rolling in addition to pitching gives a closer fit to the 
d skew. Without knowing the ship’s specification, the exa

wi g is not certain.  

0 Observation of Long Waves Generated

per presents analysis of ship wake
fr
boat. They display all the properties of solitons, and are much longer than the waves 
that make up the Kelvin-wake. For this reason they might be better for spaceborne 
detection of ship wakes. The measurements are done with an apparatus for measuring 
current speed designed and built by the San Francisco State University (SFSU). A 200 
MHz carrier phase-modulated with a pseudo-random binary sequence is used, wh

ultrasound signals.  
 
One group of waves that has been observed is the usual Kelvin wakes (large waves) 
with amplitude up to 0.3 m/s and periods of 4 to 6 seconds. The other group with 
periods of 30 to 40 seconds arrives well before the Kelvin wake, and sometimes 
before the boat. There are several features separating these wakes from the Kelvin 
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wakes. The wake’s propagation velocities are supercritical (exceeding gh ), and 
they lack dispersive effects, which is characteristic of solitons. It is believed that non-
linear effects cancel dispersion to produce solitons continuously emitted in the 
direction of the boat’s motion. The long waves are absent for the ferries travelling 
northwards through deeper water. For the ferries travelling southward, the waveform 
varies considerably. To understand these features completely, more direct 
observations of current distributions, consideration of bathymetry, speed and course 
of the boat, hull type as well as tidal motion and vertical stratification are required. 

paceborne SAR has before been tested for detection of wakes of ocean-going ships 

he Aurora CP-140 patrol flights and naval ship reports have historically been used 

ISAT has the possibility of dual 
polarization, while RADARSAT-2 will give quad-polarized SAR modes, which make 

ib

The pap dies: Target to Clutter Ratio (TCR) studies and a ship 

ered 
unclassified. The other method, the Cameron method, detects an elemental scatterer, 

i  
backscat rter 

S
and internal waves in the ocean. SAR observations sensitive to suppression of surface 
waves due to velocity strain is the most promising method to observe this type of 
wake. By approximating the velocity wave, the velocity strain corresponding to the 
solitons observed can be found. 

3.11 Ocean Surveillance with Polarimetric SAR (286) 

T
by the Canadian Department of National Defence (DND) to provide surveillance over 
Canadian waters. RADARSAT-1 and ENVISAT, as well as the future RADARSAT-2 
can be used for ship detection applications. ENV

it poss le to get information about a target’s structure.  
 

er presents two stu
detection study using polarimetric methods. Polarimetric image data from the sea trial 
acquisitions MARCOT’98 (Maritime Command Coordinated Operational Training) 
and CRUSADE’00 have been used. It is shown that target decomposition methods for 
polarimetric data are suitable for both detection and classification applications, as well 
as providing information about the scatterer’s physical structure. The TCR study 
indicates that the HH and HV channels are more optimal for ship detection 
applications for incidence angles >45° and <45° respectively. This gives useful 
information when choosing polarization combination on ENVISAT and on the future 
RADARSAT-2.  
 
Polarimetric methods improve the ship detection capabilities compared to single 
channel results. A method developed by Van Zyl discerns from polarimetric data, 
whether the received backscattered data has bounced of an odd, even or several 
number of times. The data that doesn’t fit any of these categories is consid

or prim tive, based on the physical scattering mechanism associated with the image
ter. The five elemental scatterers: cylinder, dihedral, narrow diplane, qua

wave, and dipole primitives (derived from the method) are studied. This method is a 
very robust target detection method for the maritime environment, and it provides 
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structural information, which is suitable for classification. Both decomposition 
methods reject false alarms quite well. Buoys were discriminated from the ships, and 
this is important for automatic ship detection capabilities. The Cameron method 
showed promising results for ship classification, and the classification was used to 
discern false targets successfully from the data set. Data from the CRUSADE Trial 
indicates that some aspects of a ship may be possible, but this requires further 
investigation. It is also shown that saturated signal data degrades the polarimetric 
detection rates. 

3.12 On the Use of Complex SAR Image Spectral Analysis for Target 

The paper describes how the magnitude and the phase of polarimetric SAR imagery 

le effects are 
analysed by generating a number of sub looks in azimuth and range from the SLC 
ima . roduct (2L-IHP), which 
qua es spectral 

hitening, generation, and overlapping sub looks. The processing of azimuth and 

• Only airborne SAR data was used, which gives better spatial resolution and 
T

or 
cidence angles between 45º and 70º. At incidence angles lower than 45º, circular 

polarization is better suited, because the ocean backscattering is mainly dominated by 

Detection: Assessment of Polarimetry (249) 

can be used for point target detection and analysis. An analysis is first done on a 
Single-Look Complex (SLC) image, which is a single polarized radar image. The 
image included point targets embedded in clutter. The inherent speck

ge  The paper defines the 2-Looks Internal Hermitian P
litatively increase the TCR. The derivation of the 2L-IHP includ

w
range spectra before the derivation is also described. To be able to model the point 
target behaviour, a simulation tool is developed. The way the method has been used 
has several limitations:  

• The IHP works properly only if the target response remains constant in 
magnitude and phase throughout the whole illumination time. 

• The performances of the algorithm could not be quantified accurately, because 
the ground data was too poor.  

• Only fully developed speckle was considered. 

CR than spaceborne SAR data.   
 
The paper also proposes a polarimetric extension of 2L-IHP, and defines the 
optimised polarimetric 2L-IHP. The polarimetry enhances the detection capabilities, 
and provides additional information for target analysis compared to single 
polarization. Ship detection, mapping of permanent scatterers in interferometry, and 
mapping of stationary point targets in radar grammetry are possible applications.  

3.13 On the Use of Polarimetric SAR Data for Ship Detection (256) 

The paper investigates the polarization information for ship detection by using 
polarimetric SAR images from the airborne Convair-580. The data set is collected off 
the Nova Scotia coast in Canada, Polarimetric signatures of ships are analysed f
in
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specular scattering. The ocean signature and the ship response are both low at HV-
polarization. VV-polarization provides best information on the sea state, and more 
ships are missed at this polarization. HH-polarization gives the best TCR at grazing 
angles, out of the three classical polarization channels HH, VV and HV. The TCR 

etric 
informat information for ship 
detection. T  

 of the ocean scattering mechanism. RADARSAT-2, which has the 
cap il  data, will improve ship detection capabilities provided 
that e  calibrated.  
 
To li wer incidence angles (20º- 40º), other campaigns will be 
done with the Convair-580. Tests will be performed for different types of ships with 
different orientations in varying wind conditions.  

3.1 eatures Workstation for Ship 
Detection (115) 

 on board RADARSAT-1, 2) the processing algorithms and 
resultant outputs from the Canadian Data Processing Facility (CDPF), and 3) the 

its e 
paramete lso 
improve the use of the OFW

starts to be significant at incidence angles larger than 55º. The radiom
ion from the three channels does not provide enough 

he detection methods, which are based on the thresholding decision over
the sea clutter K-distribution, are also limited.      
 
The polarization entropy improves the TCR for incidence angles up to 60º, because 
the Bragg ocean mechanism has lower entropy compared to the ship’s polarization 
entropy. The ships can hardly be seen in HH-polarization. The efficiency of the 
polarization entropy is reduced at larger incidence angles, because the increasing 
heterogeneity

ab ity to use full-polarized
 th  modes are well

va date the method at lo

4 Optimization of the Ocean F

The paper presents how the use of the Ocean Features Workstation (OFW) for ship 
detection can be optimized. It is designed for unattended analysis of RADARSAT-1 
ocean scenes. Ship detection is a focal point of most OFW operations. The final goal 
for the workstation is also to be able to extract wind speed and direction, calculate two 
dimensional wave spectra, as well as detection and classification of ocean surface 
features such as fronts, slicks, and eddies. The limitations using the K-distribution 
based ship detection algorithm (81) were demonstrated while using the OFW during 
the MARCOT’97 military exercises (83). The limitations are due to: 1) the hardware 
and beam table parameters

OFW elf. One solution that minimizes the problem is to carefully select som
rs within the OFW. Modifications to the CDPF and the OFW will a

. The report presents five recommended separate OFW 
configuration files for different combinations of beam mode and product type.    

3.15 Orbital SAR Simulator of Fishing Vessel Polarimetric Signatures 
Based on High Frequency Electromagnetic Calculations (193) 

A preliminary numerical simulator able to simulate the full-polarimetric raw data for a 
given orbital SAR system from a realistic vessel model was presented in (192). This 
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paper presents applications of the simulator. Using the simulator, it is possible to 
construct a precise database of vessel signatures, which can be used to develop 
classification algorithms. Determination of system parameters of a future SAR sensor 
that will be used for ocean monitoring is also an important application of the 
simulator. Validation tests and development of new improvements of the simulator 
re also presented. The improved simulator is more realistic with respect to the vessel 

.16 Results from the Crusade Ship Detection Trial: Polarimetric SAR 

coastline in Canada in March 2000. It assessed ship detection capabilities for several 
ys
R

• P  

3.17 SAR Detection of Ships and Ship Wakes (269) 

ips 
and ship wakes in an ESA contract study in 1996. Analyses have been done on more 

olution.  
 

a
speed and the rotation of the vessel during acquisition due to sea state. Verifications 
of the accuracy on the reconstruction of point targets and the correct polarimetric 
behaviour of the simulator have been done.  

3
(287) 

The experiment presented in the paper is performed offshore of Newfoundland’s 

radar s tems. Image data was collected over a period of ten days from: 
• ADARSAT-1 

olarimetric C/X SAR at Cape Race, Newfoundland
• High Frequency Surface Wave Radar (HFSWR) also at Cape Race 

 
Three ships remained on site at specified positions during the entire period. The 
extensive data set included 60 PolSAR (Polarimetric Synthetic Aperture Radar) 
images. The results indicate that dual use of HH- and HV-polarization is efficient for 
wide area ship detection applications. 96 % (67 out of 70) of the ships were detected 
by using a moment analysis (4th) method. Even a 20 m wooden hull vessel was 
detected. Polarimetric target decomposition methods indicated that false target 
discrimination is more robust with PolSAR data compared to single channel data. The 
results also indicate capability for recognition of ships.  

The paper presents some results obtained using spaceborne SAR for detection of sh

than 200 ship wake appearances in Seasat images. An example of an image from the 
English Channel shows that the dominant wake feature is the dark turbulent wake. 
Some Kelvin arms can also be seen. Two of the wakes showed interesting features. 
They both have one bright and one dark Kelvin arm displaced in azimuth, and the 
opening angle is much less than the predicted angle (2 x 19.5°). The turbulent wakes 
typically persist for about 7 minutes assuming typical ship speed of 8 m/s. Wind 
speeds of about 4-5 m/s are very favourable for wake imaging, while no wakes were 
reported in Seasat images at wind speeds greater than 10 m/s. The visibility of the 
wakes depends on the environmental conditions, radar wavelength, and res
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Some gital techniques for detection and analysis of wakes are presenteddi . There are 

 be inferred from the following scene 
parameters: 

N
• L

 Comparing the Bragg and HSW Imaging Models (248) 

he report describes two imaging models used to simulate SAR imaging of ship 

 in the model. Results using the HSW model showed that the 
ragg resonant component is the main contribution to the radar backscatter in L-band. 

several ways to determine a ship’s speed and direction of motion. ERS-1 data have 
been used in the experiment.   

3.18 SAR Imaging of Vortex Ship Wakes. Vol. I: Basic Theory and 
Simulation in L-band Using Bragg Model (247) 

The report describes a numerical simulation scheme for detection of ship wakes, 
which is able to model SAR imaging of different current-induced ocean phenomena. 
The simulations of ship wakes are performed in the L-band using the Bragg model. 
Parameters describing the wind and wave environment, ship and SAR characteristics, 
as well as grid sizes and spacing could be varied in the model. Even though the spatial 
resolution is 25 m, useful information can

• umber of ship pixels 
ength of ship 

• Spatial distribution of strong scatterers on board the ship 
• Direction of motion 
• Velocity 
• Wake length 
• Wake width 
• Wind measurements or forecasts 
• Wake measurements or forecasts 

 
The model has many shortcomings. The ship is assumed to have constant velocity 
parallel to the satellite’s flight direction, which is not always the case. The size and 

ull form of the ships and the weather conditions may not be constant in a real SAR h
image. The Bragg waves have no azimuth component, because it is assumed that the 
wind blows in range direction. Axial flow and initial circulation are not included. The 
model can be useful as a first attempt to model the wake imaging mechanisms for 
ships not moving in the range direction. The results from the simulations are 
compared with empirical wake data obtained from Seasat SAR images, and the model 
gives reasonable values.  

3.19 SAR Imaging of Vortex Ship Wakes. Vol. II: Simulation in L- and 
C-Band

T
wakes in L- and C-band. The first model is the naive Bragg model and the second is 
the HSW model, which includes contributions from the full ocean wave spectrum. 
Holliday et al proposed the HSW model in 1986 (16). Parameters describing the wind 
and wave environment, ship and SAR characteristics, as well as grid sizes and 
spacings could be varied
B
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The rest of the backscatter comes from longer waves, and increases with increasing 
wind speed, because the significance of tilting and quasi-specular effects increase 
with increasing wind speed. This fraction is larger for the C-band frequency (in 
accordance with the HSW model). The turbulent wakes are as visible in C-band as in 
L-band.  
 
Results indicated that the naive Bragg model is not always enough to fully describe 
the radar backscatter mechanisms. Using C-band, the model breaks down. Increasing 
wind speed decreases the peak values of the bands. A complete parameter study was 
not possible due to the extensive amount of CPU time needed to run the program. 
 
Two shortcomings of the simulation model, in addition to the ones described in (320) 
are 1) that velocity bunching is not included in the HSW model and 2) that each wave 
packet that crosses the wake is treated as it is experiencing a “frozen” current profile.  

 of the chirp radar as well as the 
rbit of the satellite are taken into account. Commercial computer-aided-design with a 

3.20 SAR Imaging of Vortex Ship Wakes. Vol. III: An Overview of the 
Pre-ERS-1 Observations and Models (246) 

The report presents an overview of the pre-ERS-1 observations and models. It 
describes the various turbulent wake observations, including previously not discussed 
Seasat SAR scenes, amateur photos of wakes behind different sized ships, as well as 
results from the 1988 NORCSEX (Norwegian Continental Shelf Experiment) 
campaign at Haltenbanken. Three models make a complete simulation scheme for the 
SAR imaging of turbulent wakes: 1) a model for the generation and development of 
the surface currents behind the ship, 2) a model for the wave-current interaction, and 
3) a radar backscatter model. Requirements for a complete turbulent wake model are 
also discussed. Analyses are done to see to what extent the qualitative implications of 
the various models are consistent with the empirical data available. Finally, 
conclusions for ERS-1 applications are presented. 

3.21 Satellite SAR Simulator for Fishing Vessels Signature Studies 
(191) 

The paper presents a satellite SAR simulator for detection of fishing vessels, which is 
a modified version of the RCS prediction code developed at the Universitat 
Polytècnica de Catalunya (UPC). The characteristics
o
high degree of detail and fidelity has been used, which makes it possible to generate 
the vessel models. The SAR simulator can be used to calculate the full-polarimetric 
raw data. Based on polarimetric decompositions, it is possible to develop vessel 
classification algorithms. The simulator can also be used to simulate existing or new 
sensors to study its limitations and applications for vessel classification.    
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3.22 Sea Surface and Ship Observation with MEMPHIS(111) 

The mmW radar MEMPHIS of FGAN-FHP has been used to measure many scenes in 
SAR geometry. The purpose of the research presented in the paper was to investigate 

ili rface. 

incidence angle is represented in Vachon et al’s model. The minimum 
ship length that can be found against the ocean sea clutter is determined by using the 

l in d 
W us the minimum 

 increase in corner reflections back to the radar. 
sing the upcoming RADARSAT-2 standard mode for a wind speed of 10 m/s, the 

the ab ty of SAR to detect natural and manmade disturbances on the water su
The scattering mechanism on the sea surface showed significant scattering on two 
frequencies that were used, 35 GHz and 94 GHz. The dominant interaction can be 
modelled by the Bragg resonance at 35 GHz, but this is not valid at 94 GHz. Changes 
in the local incidence angle due to modulations of spectral components (whose 
wavelength are not compatible with the Bragg criterion) are important at 35 GHz, and 
even more important at 94 GHz. Thus, special care should be taken when the upper 
mm-wave radar bands are considered for applications of indirect signatures on the sea 
surface, for example ship wakes or oil spill. 

3.23 Ship Detection Performance Predictions for Next Generation 
Space borne Synthetic Aperture Radars (244) 

The thesis focuses on the strong and weak points of using Synthetic Aperture Radar 
(SAR) for ship detection. Spaceborne radars will have a main role in ship detection 
for civilian and military purposes in the future. The well-known and reliable ship 
detection model by Vachon et al in 1997 is tested in the Canadian Ocean Monitoring 
Workstation as well as in some validation field programs. The RCS as a function of 
wind speed and 

critica tensity level obtained from a statistical relationship between ship size an
RCS. ind speed changes the ocean RCS and the critical intensity, th
detectable ship length is strongly dependent on wind speed.  
 
The upcoming RADARSAT-2 S1 mode has 3.1 Number of Looks, incidence angle of 
23.5°, and 99.5 % confidence. For this mode, it is expected that a change in the wind 
speed from 2 to 10 m/s will change the minimum detectable ship length from 24 to 37 
m in the best case and from 29 to 54 m in the worst case. The PIRATA (Pilot 
Research Moored Array in the Tropical Atlantic) project will survey areas on the 
north coast of Brazil. With wind speeds of 6 m/s, it is expected that the minimum 
detectable ship length is 32 m in the best case and 42 m in the worst case. The 
minimum detectable ship length is dependent on the wind speed, incidence angle and 
radar resolution. 
 
Larger incidence angles reduce the ocean RCS, due to a reduction in Bragg scattering, 
and increase the ship RCS, due to
U
minimum detectable ship length is 20 m for an incidence angle of 20° and 99 m for an 
incidence angle of 45°.  
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A reduction of the pixel size increases the probability that the ship reflects photons 
from that pixel. By changing RADARSAT-2 modes from ScanSAR mode to Ultrafine 
Narrow mode, it will increase the area resolution by a factor of 103 for wind speed of 

s, um detectable ship length 

3.24 Ship Detection Using Polarimetric SAR Data (230) 

e 
SAR data. Target feature vectors are being extracted from polarimetric data for use in 
classificatio s. An alternative analysis technique, land-use, has been 

ight as this threshold value, thus the ship’s main scatterer types will be 
visible and become distinct from the ocean clutter.   

The spa t for the scatterer classification, and thus it 

10 m/ incidence angle of 20° and 1-look, and the minim
will decrease from 280 m to 15 m. Using RADARSAT-2 Fine Resolution modes, it is 
possible to detect ships that are as small as 1.5 m to 3.5 m. This is a large 
improvement in ship detection, and it also gives the possibility of recognizing the ship 
in good conditions (wind, sea clutter etc). The possibility of using cross-polarization 
also improves the ship detection capabilities. The new resolution modes and the 
possibility of using cross-polarization are the main reasons for improving the ship 
detection capability. On future missions, the main SAR characteristics desired are 
high incidence angle orbits, shorter repeat cycle, multi-polarization, and large swath 
widths at high resolution.   

The paper presents polarimetric techniques used to get information from spaceborn

n algorithm
investigated. The full scattering matrix is decomposed for each image pixel into three 
orthogonal components, and then a series of matrix manipulations are performed. 
Corresponding to one of the various physical elemental scatterer types, the radar 
return image pixel is characterized. The advantage of this method can be utilized in 
ship detection, because polarimetric analysis is carried out for each individual pixel. 
Areas of a typical polarimetric content may characterize the vessel well enough, so it 
is possible to mitigate the backscatter from the sea clutter. The method is reliable for 
ship detection if the target is made up of different scatterer types than what is found in 
the surrounding ocean. Data used in the experiment is taken from a SIR-C experiment 
in 1994, in addition to simulated SAR data of ships. SIR-C operates in the L-band, 
and the data used are full-polarimetric single-look complex data. The simulated SAR 
data is of a small commercial ship of about 50 m, and the resolution is approximately 
half of that. This image was found to contain dihedrals, narrow dihedrals, and quarter 
waves, while the ocean in the images from SIR-C primarily consists of cylinders at 
thresholds as low as -15 dBm. At this level all the ocean clutter is visible. The ship is 
at least as br

 
tial resolution is not so importan

can be used for wide area surveillance. A better understanding of how the scattering 
matrix changes over the sea states can be obtained by analysing more images of 
ocean. This can be fed back into the ship detection algorithm, and all sea clutter can 
be eliminated, leaving only targets behind. The paper also investigates implications 
using fully polarimetric SAR data for ship detection, which is required for this system 
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of ship detection. The requirements for full-polarimetric SAR images and better 
resolution are important.  

3.25 Ship Surveillance Using RADARSAT ScanSAR Images (231) 

The paper presents the ship detection performance of the wide area RADARSAT-1 
ScanSAR imaging modes. The sensitivity to imaging geometry, environmental 
conditions, ship size, and SAR processing algorithms is analysed. RADARSAT-1 

hannel during 
ode. The average 

  

CN2 mode due to the shallow incidence 
angle and system noise. The ScanSAR Narrow Near mode has a steeper incidence 

en 
using th . A standard CFAR algorithm together with a neural network post-
processo  automatic ship detection process. An average 

e part of 
e swath. Signatures from ship wakes are very similar to those observed from the 

images used in the exercise have been acquired over the English C
1996-1998 using mainly the ScanSAR Narrow Far (SCN2) m
detection rate for all ships was 64 %, while it was 77 % for shipping lanes. The ships 
that were not detected are believed to be smaller fishing vessels and pleasure craft. 
The smallest vessels visible in the SAR imagery were about 30-40 m. The detection 
rate increased at larger incidence angles. An experimental processor was used to 
investigate different SAR processing algorithms, and it produced a detection rate   
4.6 % better than with standard processors due to better image focusing and sharper 
output. Few wakes were detected in the S

angle, which improves sea feature visibility, and thus more ship wakes can be se
is mode
r was used to develop an

detection rate of 88 % was achieved with a false alarm rate of 12 % (using three 
SCN2 images). 

3.26 Ship Traffic Monitoring Using the ERS-1 SAR (270) 

The paper presents a fast processing and distribution chain for ERS-1 SAR images, 
which has been developed in Norway. Large quantities of ERS-1 images have been 
analysed to be able to analyse the ship and ship wake detection capability of the 
satellite. Analyses of ships and ship wakes, as well as automatic detection have been 
done using the 30 m resolution Fast Delivery product. Ships larger than 120 m can be 
automatically detected in ERS-1 SAR images, while ships shorter than 100 m may 
become invisible at some wind speeds because of high backscatter from the sea. 
Medium sized ships are problematic to detect at wind speeds greater than 10 m/s. 
Detection of ships smaller than 50 m is very unlikely due to ERS-1’s steep incidence 
angle. The very far range part of the swath is better to use than the near rang
th
Seasat satellite. The dark turbulent wake is the most frequent wake. A bright line 
along the upwind side of the wake often accompanies the wake. The ship itself is seen 
more often than the ship’s wake.   
 
The 100 m resolution images of high radiometric quality have been used for oil spill 
detection. Oil spill from ships can also be automatically detected, but some false 
alarms are expected because natural surface slicks may sometimes be classified as oil 
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slicks at low wind speed. At high wind speeds, it is more difficult to automatically 
detect oil slicks. 

3.27 Ship Wakes and Their Radar Images (224) 

-
images a ngle to the ship’s path, or as transverse or diverging waves of 

nes. 

3.28 Ship-Sea Contrast Optimization When Using Polarimetric SARS 

The experi ntinuation of the study done in (256). 
Calibra
coast in C les 
betwee
better whe
data (HH, VV, or HV). Lower incidence angles and the robustness of the polarimetric 
discrim s (7, 
14, and 20 knots). The information from polarization channel phase difference is also 

 
 p w 

n is not degraded at rougher sea 
onditions.  

 the chirp radar 
gnal and the orbit of the satellite are taken into account. Commercial computer-

Ship wakes in SAR images appear as a dark trailing centreline region, bright V
ligned at some a

the Kelvin-wave pattern. The dark region, with low backscatter, is usually associated 
with a region lacking in short wave components. The bright line features are due to 
enhanced radar return. The paper presents a survey of remotely sensed wake images, 
the systems that have collected the wakes, and the theory of Kelvin wakes including 
examples. Kelvin wakes are the primary source that causes the dark centreline and 
bright V-images. The paper also presents a survey of the phenomena that causes the 
dark centreline returns and some predictions of radar reflectivity of these dark 
centreli

(260) 

ment presented in the paper is a co
ted polarimetric airborne Convair-580 SAR data collected off the Nova Scotia 

anada is used to analyse polarimetric signatures for incidence ang
n 45º and 70º. At incidence angles lower than 60º, the TCR is significantly 

n full-polarimetric information is used compared to one channel polarized 

inators for ship enhancement are investigated for different wind condition

examined, and it is found that the information in the HH-VV channel phase difference
is very romising for ship enhancement when dual-polarized SAR is used. The ne
polarization entropy and anisotropy improve the TCR significantly at operational 
SAR incidence angles. Rough sea conditions, with 20 knots wind speed, degrade the 
effectiveness because the sea backscattering becomes very heterogeneous. Cross-
polarization (HV,VH) gives the best contrast at steeper incidence angles. The 
effectiveness of detection using cross-polarizatio
c

3.29 Simulation of Polarimetric SAR Vessel Signatures for Satellite 
Fisheries Monitoring (192) 

The paper presents a simulator that is a modified version of the RCS (Radar Cross 
Section) prediction code, which is developed at the UPC (Universitat Polytècnica de 
Catalunya). It is used to analyse polarimetric SAR vessel signatures to monitor 
fisheries activities. In the proposed new version, the characteristics of
si
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aided-design packages with a high degree of detail and fidelity are used to generate 
the vessel models. The simulator is used to calculate full-polarimetric raw data. Using 
the simulator and based on polarimetric decomposition, new vessel classification 
algorithms can be developed. The paper presents the first results with the new 

roposed SAR simulator. It is shown that the simulator can simulate existing or new 

3.30 Statistical Modelling of Ocean SAR Images (131) 

ica surface in 

 are discussed in 
is paper. The same SAR scene in different polarimetric channels (HH,VV,HV,VH) 

ectral estimator (Fast Fourier Transform, FFT) is replaced with parametric 
ators to obtain super-resolved images. The proposed processing scheme 

 based on a two-dimensional covariance met
polarimetric data. A suitable fusion technique is required to be able to obtain a single 

tegy includes 
sion of separately super-resolved images and the centralised fusion strategies 

include super-resolution of a fused image. The Minimum Mean Square Error 
MSE) strategy is the first centralised fusion strategy,

-resolved in the output image. A higher TCR is achieved by joint 
rocessing of the polarimetric channels compared

higher TCR gains are achieved together with greater robustness. The techniques 
presented in the paper can be directly applied to ship targets. A larger image can be 

p
sensors to study its limitations and suggest new configurations to improve the 
usefulness for vessel detection. 

Statist l modelling of the fully developed backscattering from the ocean 
SAR images is presented in this paper. A new method is proposed that automatically 
selects a well-suited distribution of the histogram in a system of parametric 
distributions. In accordance with the skewness and flatness of its histogram a 
distribution is selected, and the corresponding intensity distribution is processed 
called KUBW. This statistic modelling can be used for the design of segmentation, 
texture analysis or for filtering algorithms.  

3.31 Super-Resolution of Polarimetric SAR Images of Ship Targets 
(210) 

Spectral analysis techniques used to analyse polarimetric SAR data
th
is used to extract all the information of the same backscattering properties. The 
classical sp
spectral estim
is hod for both single channel and 

super-resolved SAR image. A decentralised fusion strategy and two centralised fusion 
strategies are proposed for this purpose. The decentralised fusion stra
fu

(M  which combines the original 
images on a pixel-by-pixel basis. The second centralised fusion strategy is the 
Polarimetric Whitening Filter (PWF), where the fused image is obtained by 
processing the polarimetric measurement vector through a whitening filter.   
 
SIR-C SAR images are used to test the techniques, and single channel images are 
compared with multi-polarization images. The total number of identified target 
scatterers with respect to single channel processing mostly increase, because they are 
transferred and super
p  with single channel images. Thus 
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focused in small contiguous patches, and thus parallel processing can be used to speed 
up the image formation. Future research and applications of these techniques are 
presented in the end of the paper.      

3.32 Synthetic Aperture Radar Imaging of Ship Wakes in the Gulf of 

The paper presents the Gulf of Alaska SAR experiment, which is a study that 

uthally travelling 
ips were imaged in 4 different sea states. The incidence angle for ships travelling in 

he paper presents an overview of ship wake imaging using spaceborne SAR, as well 

Alaska (239) 

investigates SAR imaging of narrow-V wakes. The images are taken over a deep 
mixed layer environment so that surface manifestations of ship-generated internal 
waves are small. The SAR images were done by five flights over a deep-water region 
where the mixed layer depth exceeded 100 m. Both range and azim
sh
azimuth direction varied from 24˚ to 53˚. The following results are reported in the 
paper: 

1. The half angles associated with narrow-V wakes are consistent with first-
order Bragg surface wave theory. 

2. The decay rate along the bright arms of the narrow-V wake is consistent 
with the combined viscous and radiation decay of short surface waves with 
the first-order Bragg wavelengths. 

3. Narrow-V wakes are observed at incidence angles less than 45˚ in defined 
sea states. The longest narrow-V wake bright arm observed is 3.3 km.  

4. Turbulent wakes (dark band between the bright arms) are observed at 
incidence angles less than 53˚ in defined sea states. The longest turbulent 
wake length is 41 km.  

5. Bright boundaries along one side of the turbulent wake are observed. 

3.33 Synthetic Aperture Radar Imaging of Surface Ship Wakes (189) 

T
as the ship wakes dependency on environmental conditions and SAR parameters. 
Various wake phenomena are seen with moving ships in SAR images. Three general 
categories are used to classify the features: 1) surface waves generated by the ship, 2) 
turbulent or vortex wakes, and 3) internal waves.  
 
The Bragg wave dispersion mechanism produces narrow wakes, which are only seen 
in very low wind and under any stratification conditions. It is most strongly observed 
at L-band, with a look direction perpendicular to the ship track, and at higher ship 
speeds. Kelvin wakes are visible through the modulation of an existing field of Bragg 
waves, and are observed under moderate wind conditions, at both L- and X-band, with 
all look directions. The Kelvin envelope is easiest observed when they are aligned in 
the azimuth direction, the individual cusp waves when they are range travelling, and 
the longer stern waves when they are travelling in azimuth direction.  
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Turbulent wakes appear in moderate winds, under any stratification condition, in any 
look direction, and in both X- and L-band images. The dark lines are often larger at L-
band, while the bright lines at the edge are stronger at X-band. These wakes are the 
most frequently observed wake signature.   
 
Internal waves are observed under moderate winds, require a strong and shallow 
density gradient, are larger at L-band than at X-band, and are strongest for a cross-
track look direction. 

3.34 The Ship Detection Capability of ENVISAT's ASAR (205) 

The paper presents a discussion of which of ENVISAT’s modes and products that are 
useful for ship detection. The noise-equivalent values σ0

 and the Equivalent Number 
of Looks (ENL) are better than what was estimated before the launch of ENVISAT. 
The Alternating Polarization (AP) mode represents a new and interesting spaceborne 
capability for routine observations. The Norne oil field, outside the coast of the 

 chosen for acquiring data due to the large oil production 

e
ocean backs ss-sections of 

z
 

he rel

middle of Norway, was
vessel that is situated there. Results have shown that VV/VH AP data is useful for 
ship d tection. Cross-polarized ocean backscatter is much lower than co-polarized 

catter, especially at steep incidence angles. The radar cro
fishing vessels are more similar at co- and cross-polarized data. Thus, using the cross-
polari ed channel will make the detection of fishing vessels easier.  

ationship between the length of the ship and the radar cross section (T shipσ ) is 

 

given by: 

)(08.0 θ
σ

R
l ship=  (3.11)  

To be able to calculate the RCS for the smallest ship that is possible to detect, a 
o

  

 Tsea +σ  (3.12) 

the sea
with lo
 

averag
express

thresh ld value (T) of the average backscattering or noise floor is used: 

min 10arship = ρρσ 10/)(

ρr and ρa are the resolutions in range and azimuth direction, and σsea is the RCS from 
 surface. A threshold value of 10 dB over sea, σsea, is applicable for images 
w or moderate resolution.  

The relationship can also be expressed in terms of a given intensity level (IT) and an 
e intensity value of unity. The minimum detectable vessel cross section can be 
ed as:  

raTI ρρσσ 0=  (3.13)  
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where σ0 is the ocean’s normalised radar backscatter. The minimum vessel size is 

viewin
directio irection.  

relation tection, ENVISAT, different instruments on board ENVISAT, 
ASAR instrument, radar reflection, radar cross section, different algorithms used for 

 
The report also has a practical part with analysis of ENVISAT’s Wide Swath mode 
nd Alternating Polarization (AP) mode. HH-polarization gives lower reflection from 

same im  The AP mode gives new 
and unique opportunities to measure radar reflection from the same area at the same 

would ithin a broader spectre 
f incidence angles. The opportunities of the ASAR AP mode to detect ships and ship 

(VV/V een investigated, as 
well as ow they depend on the imaging geometry. The ship detection capacity is 

so evid aging 
geometries, and sea states have also been investigated. Radar signatures are also 

structur
 

ENVIS
for new T-2 bove 
VV-polarization for ship detection using the Wide Swath mode. An area imaged with 

will gi
Wide S end on how large area is required 
to cover. The AP mode with cross- and co-polarization should be used for smaller 

the ship

therefore heavily dependent on the ocean backscatter (σ0), which varies with radar 
g geometry, polarization, and frequency, as well as with wind speed and 
n relative to the radar look d

3.35 Evaluation of ENVISAT ASAR for ship detection (In Norwegian) 
(97) 

The report starts with a theory part. It presents polarization theory and polarization in 
 to ship de

ship and ship wake detection, and ship detection using ENVISAT.  

a
the sea surface than VV-polarization under the same sea and wind conditions and the 

age resolution, thus resulting in better TCR ratio.

time with two different polarizations. It was before launch expected that this mode 
be an improvement for ship detection in high sea and w

o
wakes have been explored. The use of different combinations of polarizations 

H, HH/HV and VV/HH) for ships with known shape has b
 h

better when using cross-polarization for steep incidence angles. The difference is not 
ent for larger incidence angles. The TCR for different polarizations, im

analyzed, and it is shown that signatures for cross polarization have prominent 
e that can be utilized.  

The report summarizes the results in the end, and gives recommendations for use of 
AT ASAR for ship detection. The recommendations are partially applicable 
 modes on the future RADARSA .  HH-polarization is recommended a

steep incidence angles should use the AP mode with co- and cross-polarization. This 
ve best TCR as well as opportunities for ship wake detection. Choosing the 
wath mode or the AP mode will mainly dep

areas than approximately 100 km × 100 km to be able to get maximum information of 
s.  
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3.36 Wake Measurements (182) 

er presents a study that was set up by the Special Group of Experts on Naval The pap

e
in the d
wake m isted, and not 

interna
echno rovided wake scaling methods for twin-screw ships, while this 

There w

3.37 

(96) valgte Fenomener Over Sjø i 
Digitale ERS-1 Bilder, Thesis, University of Oslo. 

(97) 
Defence Research 

stablishment, Kjeller, Norway. 

(98) 003): Automatic Target Recognition 
Using Multiple Description Coding Models for Multiple Classifier Systems, 

(99)  T Miloh (1994): On the Determination of Density Profiles in 
tratified Seas from Kinematical Patterns of Ship-induced Internal Waves, J of 

(100) xelsson, SRJ (1995): Frequency and Azimuthal Variations of Radar Cross-

onar 
nd Navig, Vol. 146, No. 6, pp. 279-284. 

(102) 
ol. 144, No. 2, pp. 87-95. 

Hydrodynamics and Related Problems (SGE (HYDRO)) in 1984 to establish a 
reliabl  and accurate wake prediction procedure. The procedure was going to be used 

esign of propellers for naval surface ships. RSG4’s (Research Study Group on 
ents) work showed that only limited full-scale data exeasurem

enough resources were available to be able to do a full-scale trial. The data that 
existed had been on unlimited distribution, and thus already been discussed at various 

tional meetings and conferences. ITTC (Information and Instructional 
logy Center) pT

was not seen as a particular problem by many countries. LDV (Laser Doppler 
Velocimetry) had been discussed at many international meetings and conferences. 

as not enough data and/or interest for RSG4 to make worthwhile progress that 
eady covered.  had not been alr
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RGET WAKE DETECTION 

4 Ove  

T win  gives an overview of publications on the theme “Target and Wake Detection” sorted after publication year. The papers 
include descriptions of approaches for detecting ships and wake-like features in SAR i es. Summaries of a selection of some of the most 
i t an apers are given following the table. 
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.1 Scan curve including features corresponding to aFigure 4  turbulent wake. 

 
                Azimuth (90°)  
  

 
Range (0°) 

Figure 4.2 Shows the principal for a simple method for ship detection. b is 20 
pixels, while a is 10 pixels. 

 
All the image pixels are compared to a threshold, which is defined by qσB. q is 
normally 5.0. σB is for amplitude images given by:  

b 

a 
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NBB

⎟
⎠
⎞

⎜
⎝
⎛ −

=
14

πµσ  (4.2)  

and r

 

 fo  intensity images: 

NB
Bµσ =  (4.3) 

If neighbouring pixels above the threshold are found, then they are grouped together, 
and each group is a potential ship. 

Perform and scan curve tests, wake behaviour test, and ship-to sea 

     

 a big limitation to the use 
of the described detection system. Ships shorter than 50 m disappear with wind speeds 

/s.  

 input from the screen.  
• The image is enhanced and a speckle filter image is produced. 
• Coastline detection is performed. 
• A region of interest is chosen and CFAR is performed.  
• Target pixels are extracted, and the target detection module is performed 

followed by the wake detection module.  

 
ing homogeneity 

condition test reduce the number of false alarms. ERS-1 images are used to 
demonstrate the system, while both ERS-1 and Seasat images are used to assess the 
system. To test the system, visual evaluation is compared with the test results. Results 
showed that there were no false ships detected. The percentage of lost ships was  
7-8 % for both ERS-1 and Seasat. The ERS-1 images had a higher percentage of lost 
and false ship wakes (14.8 %) than the images from Seasat-A (7.4 %). Other 
parameters and thresholds were used to show that the number of lost ships can be 
reduced, but an adverse effect is that the number of false ships increases heavily. 
Many of the detected ERS-1 wakes were vague, and they were difficult to detect 
visually. The automatic detection performance is very good, taken into account that 
some of the selected images had extremely strong variations in the sea state. The 
project also showed that it is possible to analyse a 3-look ERS-1 scene in less than 
eight minutes. The strong sensitivity of sea backscatter with increasing wind for short 
radar wavelength and small incidence angles (like ERS-1) is

greater than 4 m/s, while ships less than 100 m disappear in wind speeds greater than 
10 m    

4.3 Automatic Moving Target Detection Using a Rule-Based System: 
Comparison Between Different Study Cases (299) 

The paper describes a method for SAR data analysis and Automatic Target Detection 
and Recognition (ATD&R) that was developed at the Space Division at Alenia 
Aerospazio in Rome, Italy. A rule-based system is used for target detection. The rules 
are parameterised based on the image resolution and the size of searched target. The 
method is following the steps: 

• The demonstrator first reads the data file and gets
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• he output gives a list of moving targets, the direction of motion, informat
bout wake properties, and the wake’s dep

 T ion 
a endence on the Doppler shift.  

 high probability by analysing the 
statistics of the backscatter scan around each ship candidate. It is also possible to 

egree of goodness is based on suitable fuzzification 
nctions set up during the system training.  

 the 
nalysed image. The threshold values are not fixed, which allows good adaptation 

 
The method is tested on a collection of images with different statistical properties and 
resolution. The results of the testing phase are presented in the paper. The method is 
well suited for modelling and parameterisation of the coastline and linear feature 
detection. The model shows some weakness in detection of ship pixels. Ship pixels 
are not always simple to detect at low resolution where the intensity of the ship pixels 
might be low, and the CFAR threshold is not able to detect it. Improving the image 
quality can decrease the false detection rate. Pre-processing the image by applying a 
non-linear technique to reduce the power of the side lobes can improve the image 
quality. The results confirm the versatility of the algorithm to different images and 
resolution.                                                 

4.4 Automatic Ship and Ship Wake Detection in Spaceborne SAR 
Images from Coastal Regions (296) 

The paper presents methods for automatic detection of ships and ship wakes in SAR 
images. The SAR processor, CESAR, has been developed at FFI for processing of 
ERS-1 data. Digital maps together with accurate pixel location algorithms are used to 
distinguish sea from land. Using a Wiener filter and a high pass filter enhances 
potential ship targets. All visible ships are detected using an appropriate choice of 
threshold. In addition more rapid working filters have been developed using statistics. 
The various types of wakes may be detected with

detect weak wakes using this method.  

4.5 Automatic Ship Detection in SAR Images (293) 

The paper presents an analysis of the problem of using fully automatic ship detection 
algorithms. This paper proposes a processing chain that first detects possible targets 
by searching through the image in parallel for bright spots and elongated wakes. Then 
the wakes are cross-validated against the bright spots to reject false alarms. The 
system detects bright spots and wakes, and afterwards associates a degree of goodness 
to each possible ship. The d
fu
 
The system has been implemented and tested on a MicroVax II sequential machine 
and on hypercube architecture of IMS T800 transputers. 42 Seasat SAR 4-views 
images have been used to test the processing chain. Suitable threshold values 
necessary for the p-tile filtering is computed on the basis of the histogram of
a
capabilities. Every ship belongs to the same subclass, and this demonstrates the 
algorithm’s robustness. Considering the information from wakes, the false alarms in 
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seacoast scenes and in very noisy images can be reduced. For the ship-wake couples 
correctly identified, a high coefficient of confidence has been obtained. The algorithm 
presented in this paper has the following advantages compared to the classical 
methods using the Hough transform: 

• Accurate localization of the whole wake and not only its direction  
bitrary number of wakes 

• Low processing time due to the use of binarized images and morphological 

4.6 

The paper describes ERS SAR imagery used for detection of ships and ship wakes in 

target p
This in o find the ship’s speed and heading. It is desirable to 
develop computer-based algorithms to perform the routine task ship monitoring of 

results o detect the location 
es. The basic steps of the algorithm are as follows. An individual ship 

orienta
the Rad
the min hip’s velocity is calculated. If the wake is a bright 
turbulent wake, the ship pixel is replaced with the background, the maximum is 

4.7 ance of an Automated Ship detection 

The pa
developed on an Apollo DN 10000 workstation. The model can be parallel computed, 
nd it may work with 4 computers. The system is very promising because it uses short 

models
targets tector, and searches for wakes are 

erformed around the ship target. The detected ships and ship wakes may be natural 

detailed

• Detection of an ar

operators   

Computer-Based Algorithm for Ship Detection from ERS SAR 
Imagery (301) 

Singapore waters. Since the SAR processor assumes the target to be stationary, the 
osition is shifted azimuthally from its actual position if the ship is moving. 

formation can be used t

ship traffic. An algorithm based on the Radon transform is introduced in the paper and 
from testing are described. The Radon transform is used t

of turbulent wak
is being identified in the input image. The determination of the ship’s centre and 

tion for each ship is done. The region of the Radon transform is defined, and 
on transform for wake detection is done. If the wake is a dark turbulent wake, 
imum is chosen and the s

chosen, and the ship’s velocity is calculated. 

Principles and Perform
System for SAR Images (297) 

per presents an automated ship detection system for SAR images that has been 

a
time and has a low false alarm rate. Accurate pixel location algorithms, digital terrain 

, and sea depth models are used to distinguish land from sea. The potential ship 
are extracted by using an adaptive point de

p
phenomena like fronts, eddies or internal waves. Thus, a homogeneity test and a 

 wake analysis are done to reduce false alarms.  
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4.8 Ship and Ship Wake Detection in the ERS SAR Imagery Using 
Computer-Based Algorithm (302) 

This paper presents a computer-based algorithm for ship and ship wake detection, 

modifie
ship detection algorithm. ERS SAR PRI images have been used to test the algorithm. 

he images are made up of 8000 pixels x 8200 pixels, equivalent to 1000 km by 102.5 

pixels w
window detection is done by 
thresholding to identify possible ship pixels. A morphological filter is used to 

neighbo
determ to detect ship 
wakes. The ship pixels are replaced with background, and half-Radon transforms are 
done to detect possible wake candidates. For each ship wake, wake extension test, 
wake orientation test and wake vs. background test are done. Calculation of azimuth 
displacement, ship speed and heading are done. The algorithm is repeated until the 
end of the PRI image. The next working window has 30 pixels x 30 pixels overlap 
with the current window. It is more difficult to accurately detect ship wakes than 
ships, because the ship wakes are often weak. To reject false ship wakes, it is 
necessary to use several wake criterion tests. The proposed algorithm does not 
perform successfully under rough sea conditions.  

4.9 Ship Detection in RADARSAT SAR Imagery (300) 

Statistical methods, Radon transform, and other image processing techniques have 
been used to develop an automatic model for ship detection in RADARSAT-1 
images. The algorithm uses the K-distribution to describe the PDF of the intensity in 
RADARSAT-1 SAR images. Then two threshold values, I1 and I

which is developed to monitor ship traffic near Singapore waters. The algorithm is a 
d version of the CRISP (Centre for Remote Imaging, Sensing and Processing) 

T
km. Geographical registration and land masking are performed. A 500 pixels x 500 

orking window is defined, and the pixel intensity is calibrated for the working 
 to NCRS (Normalised Radar Cross Section). The ship 

eliminate false ship pixels. Next, ship pixels are clustered into individual ships using 
ur clustering criterion. Afterwards, the ship’s centre and coordinates are 

ined. A Radon transform is defined on the ship centre to be able 

2, are calculated 
based on required significance levels (η1, η2, where η1 < η2). The threshold value, I1, is 
used to identify possible pixels, and a morphological filter is used to eliminate false 
ship pixels. If more than seven pixels are possible ship pixels, the centre pixel is 
considered a true ship pixel.  
 
A second part of the algorithm is used to refine some ship targets, by using simple 
thresholding and Radon transform techniques. First, some pixels are identified that 
have intensities between the two threshold values, and then for each ship candidate, a 
Radon region is defined at the ship’s centre to be able to detect possible ship wakes. 
Then the targets are rewritten in the image, and a new output image is made.    
 
Further development is needed to improve the applicability of the model, to reduce 
the computational time, and to reduce false alarms. It is shown that the K-distribution 
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does not always give a good fit. In future work, it is recommended that other 
statistical models are used describe the distribution of SAR image intensities. A 
Probabilistic Neural Networks (PNN) statistical model is a good method because it 
gives an excellent fit for the intensity of SAR imagery.  
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5 WA TECTION PAPERS 

 

ollo n th tion” s rimarily 
include d res in SAR images. Summarie

ble n following the table. 

KE DE
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5.2 An algorithm for Ship Wake Detection from the Synthetic 
Aperture Radar Images Using the Radon Transform and 
Morphological Image Processing (319) 

The paper describes the algorithm Ship Wake Detection based on Radon transform 
and Morphological image processing (SWDRM). The algorithm is used to detect ship 

T
r

ing the morphological 
image process (erosion and dilation operations).     

sform Techniques to Wake Detection 
in Seasat-A SAR Images (328) 

detection  were to automatically detect ships and 

wakes in SAR images, and contains the following four steps: 
1. he ocean is classified, and median filtering over the entire image is done to 

educe single speckle noise in the pre-image process.  
2. The image is divided into many sub images by moving a working window 

over the image. This step may reduce the mosaic pattern for reconstruction of 
the grey-level image.  

3. Two threshold values are set for the peaks and troughs, and the Radon 
transform is applied to the sub images. The pixels with values between the two 
peaks are defined as zero. Single peaks are eliminated us

4. The grey-level image is obtained by performing the inverse Radon transform. 
 
Moving the working window over the entire image, and repeating the four steps 
described above, construct an inverted grey-level image. A binary image can also be 
obtained. The linear texture of a ship wake in an oceanic clutter background can 
easily be detected, because it is manipulated in the Radon space to invert grey-level 
and binary images. The algorithm is not so sensitive to the threshold parameter and 
the working window size, and is very robust in a noisy background. Seasat images 
have been used to test the algorithm.  

5.3 Application of Radon Tran

The paper describes research using the Radon transform for automatic ship wake 
. The research’s two main objectives

to be able to differentiate ship wakes from other ocean linear features. The Automatic 
Detection Algorithm (ADA) was developed and tested on Seasat imagery.  
 
The Radon is given in the continuous domain by:  

 ∫∫ −−=
A

yxryxprf )sincos(),(),( ννδν  (5.1) 

where A is the image plane, p(x,y) is the pixel value at position (x,y), r and ν are the 
range and orientation coordinates of a straight line, and δ is the Dirac delta function. 
The Radon transform results in a surface with strong maxima and minima for 
significant bright and dark lines, and therefore acts as a detector. When strong 
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features have been detected in the radon transform space, hypotheses based on feature 
shapes and separations are tested to determine whether they can be associated with a 
wake feature, a natural feature, or neither. The Radon transform is performed on the 
image, and bright and dark peaks are detected in the image. The Radon transform 
integrates the image intensity along every straight line in the image, thus each integral 

mes h 
can be c about the hard target, as well as a priori to give a 
total estim t the identified candidate in fact is a vessel. Targets 

 alarms. The high-pass filtering alone is capable of 
dou ted by the Radon 
tran  are partly 

transform, which increases the computational 
efficien is achieved by 
using an algorithm b rier S m. sformation from 
image space to re pace via th thus a repeated 
application of an efficient Fast Fourier tra
computation. Th  parallel 
processing capa . The Radon 

tion  detect lines against a noisy 

Localized Radon Transform-Based Detection of Ship Wakes in 
SAR Images (309) 

he paper describes  detection of
akes in SAR images. A ship w rger than the ship itself, and 

thus it might be easier to locate the ship’s true location using information from the 

er short line segments. This Radon transform is utilized, and the Feature 
ace Line Detection (FSLD) algorithm is developed. Then the transform space is 

beco  one element in transform space. The result is a probability estimate, whic
ombined with information 

ated probability tha
below an operator-specified threshold are eliminated from the list.  
 
The TCR is greater in the transform domain compared to the image plane. The 
integration process averages out the intensity fluctuations due to noise, and the TCR 
of the feature of interest increases. To be able to improve the PD (Probability of 
Detection) and reduce the PFA (Probability of False Alarm) other processing methods 
were developed and tested. An ADA, which uses a high-pass filter followed by a 
normalized Radon transform and a Wiener filter, has shown that it is able to 
distinguish wake peaks from false

bling the TCR. It is shown that wake features are easily detec
sform for ideal Rayleigh-distributed sea background. The false alarms

caused by the departure of sea clutter statistics.        

5.4 Linear Feature Detection and Enhancement in Noisy Images Via 
the Radon Transform (324) 

The paper presents an approach to the problem of detecting linear features. The 
approach is based on the Radon 

cy compared to the similar Hough transform. The efficiency 
ased on the Fou lice Theore  The tran

featu s is made e frequency domain, 
nsform routine can do most of the 

e algorithm can be implemented on a machine with
bility. The algorithm can be tested on a noisy SAR image

transforma  increases the TCR, and thus it is easier to
background. It is shown that the method is not reliable to detect short linear features. 

5.5 

T a localized Radon transform-based approach for  ship 
w ake is more distinct and la

ship wake. Instead of performing the intensity integration across the entire image, it is 
performed ov
Sp
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processed, which isolates and locates the response of linear features and decreases the 
false alarm rate. The algorithm is tested on actual SAR images including ship wakes. 
In addition synthetic images corrupted by various levels of Weibull multiplicative 
noise are also used. The tests showed that the algorithm is robust and in the presence 
of noise and the ability to detect and localize linear features that are significantly 
shorter than the image dimensions. The algorithm is most appropriate for steep radar 
depressions where the wake feature edges are not obscured by shadowing.  

5.6 Ship Wake Detection in Synthetic Aperture Radar Images Using a 
Combination of a Wavelet Correlator and Radon Transform (320) 

Detection of a moving ship’s wake behind in a Synthetic Aperture Radar (SAR) 
formation about the ship’s size, direction, and speed of 
hip wake is a characteristic linear V-shaped pattern. It is 

perform
correla ct ship wakes.    
 

high-pa
each re ess is done to be able to correlate among the 
modules of different scale images formed from the three high-pass images. The 

the wa
The Ra en used to be able to estimate the wake’s V-
opening angle. The proposed scheme in this paper is demonstrated to be much more 

transfo own to be very 
fuzzy, and can barely be determined.   

5.7  Detection 

A ship
velocity
will be caused in the detection performance. Thus, a wavelet correlator is adopted, 

detecte e Radon 
ansform technique is then used to be able to estimate the wake’s V-opening angle. 

found t
scales. age acquired by the airborne CV-
80 SAR off the west coast of Taiwan in November 1993. The background noise is 

reduced significantly, using the method described, and the process spatial correlation 

image can give useful in
movement. One type of s
associated with high sea clutter, which causes the deterioration of detection 

ance. The paper presents a hybrid method using a combination of a wavelet 
tor and Radon transform to dete

First, a wavelet technique is applied to generate a set of multiscale images. Three 
ss images, in horizontal, vertical, and diagonal direction, are generated for 
solution scale. Then a proc

process’ output is highly representative at the ship’s wake edges. Using this method, 
kes can be detected and in addition their V-shaped pattern is well preserved. 
don transform technique is th

effective, robust and reliable in noisy background compared to a direct Radon 
rm. Using only a Radon transform, the opening angle is sh

The Application of Wavelets Correlator for Ship Wake
in SAR Images (321) 

-generated wake can give information about the ship’s size, direction, and 
. Wakes in SAR images are associated with high sea clutter, thus deterioration 

based on an orthogonal basis function (320). Using this method, the wakes can be 
d, and in addition their V-shaped pattern is well preserved. Th

tr
Ship-generated wakes will be enhanced in the reconstructed data, because they are 

o be the local maxima in the wavelet transform method of several adjacent 
The algorithm was tested on a real SAR im

5
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is found to be critical. The proposed scheme in this paper is demonstrated to be much 
ffective, robust and reliable in noisy background compared to a direct Radon 
rm. Using only a Radon transform, the opening angle is shown to be very 

more e
transfo
fuzzy, and can barely be determined.   

he paper presents an Automatic Detection Algorithm (ADA) for detection of ship 

Shafer 
or pieces of evidence from one sensor. It uses probabilities based on belief functions 
instead of statistics. These estimates of belief “can be applied to decisions about the 

more g techniques. Heuristic methods are acceptable for 
the De pster-Shafer algorithm. The peaks detected by the Wiener filter belongs to 

1. 
2.  wake. 

he third possible conclusion is uncertainty of which of the two hypotheses the peak 

Analys
probab  are labeled pd1, pd2, and pd3. A 
second sensor might give new probabilities and uncertainty p1, p2, and p3. A “mass” 

combin
_________________________ 

                  pd1        pd2          pd3 

___________________________________________ 

able 5.1 The Dempster-Shafer rule of combination. 

given b

 

  (uncertainty) 

 normalized, and new updated probability values are obtained for the 
hypotheses. 
  

5.8 Use of the Dempster-Shafer Algorithm for the Detection of SAR 
Ship Wakes (327) 

T
wakes in SAR images. It is based on the Dempster-Shafer algorithm. The Dempster-

method is designed for data fusion to combine evidence from multiple sensors 

truth of a hypothesis”. Ignorance is treated in a quantitative manner, and thus they are 
eneral than standard statistical 
m

one of the following hypotheses:  
There exists a linear feature, which belongs to a ship wake. 
There exists a linear feature, which does not belong to a ship

T
belongs to. The Dempster-Shafer method is applied to the problem of ship detection. 

is of several peaks from the output of the Wiener filter is done, and the 
ilities for the three possible conclusions

is computed for each possible conclusion by the Dempster-Shafer rule of 
ation, as given in Table 5.1. 
              __________________

p1  p1pd1      k  p1pd3 
p2      k  p2pd2  p2pd3 
p3  p3pd1  p3pd2  p3pd3 

T

k is used to identify contradictory hypotheses. The masses of the three hypotheses are 
y:  

m1 = p1pd1 + p1pd3 + p3pd1 (wake feature) 

 m2 = p2pd2 + p2pd3 + p3pd2 (natural feature) (5.2) 

m3 = p3pd3

The masses are
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A large set of SEASAT images are used to test the algorithm’s limitations. The 
 included multiple SAR ship wakes, short or faint wake features, striated ocean images

background, and/or the presence of other naturally occurring linear ocean features. 
he algorithm usually classified the wakes correctly. The misclassifications were due 

process
compet rring linear ocean structure and in striated ocean 
regions. The ADA including the Dempster-Shafer algorithm is called the Complete 

and tha
statistics, 86 of 93 ships and 21 of 24 sea scenes were classified correctly.   
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6.2 A Neural System for Automatic Target Learning and Recognition 
Applied to Bare and Camouflaged SAR Targets (350) 

The paper describes the use of a neural system for automatic target learning and 
etection. Both camouflaged and uncamouflaged military ve

using the ART-2A (Adaptive Resonance Theory) neural network. Different radar 

 
dvanced 

ctio  some 
camoufl

 parameter for the distribution that defines the 
ewness and shape of the tail. It is important to obtain a good estimate for this 

d hicles can be recognized 

views and depression angles are used and both spotlight and stripmap radar collection 
modes are used. A confidence measure reflecting the goodness of match is also 
reported, which successfully eliminates a high percentage of clutter. Since the 
algorithm is computationally simple, real-time target recognition is possible.  

ISAR (Inverse Synthetic Aperture Radar) turntable data and ADTS (A
Dete n Technology Sensor) SAR data were used for the experiments. Even

aged targets can be recognized using the proposed algorithm.  

6.3 A Search Procedure for Ships in RADARSAT Imagery (427) 

The report describes how the Constant False Alarm Rate (CFAR) procedure, based on 
the K-distributed sea clutter model, is applied to the Ocean Features Workstation 
(OFW). This approach is attractive because it provides a theoretical basis for selecting 
a CFAR. The objective is to improve the ship detection performance. Scenes from 
ERS-1 and RADARSAT-1 are examined. Visual and standard statistical tests are used 
to examine the data. The goodness-of-fit of the K-distribution model is investigated.  
 
Histogram, cumulative distribution function matching, Pearson diagrams, standard χ2 
test and Kolmogorov-Smirnov test are performed as visual criteria. All tests, except 
the χ2 test, show good fit between the model and experimental data. The report 
explains the poor performance of the χ2, and why it is unsuitable for long-tailed 
models. The approximation between the χ2 statistics and the probability function 
becomes poorer for data bins with few elements. Direct comparison of goodness-of-fit 
results cannot be performed, because the number of degrees of freedom is not 
constant. Another problem with this test is that the results are heavily dependent on 
the main body of the distribution. Thus it is difficult to accurately determine the shape 
parameter.  
 
The K-distribution model can successfully model the sea clutter, and is for a radar 
signal X given by (3.10). ν is an order
sk
parameter to set a proper threshold. Above this threshold, detected pixels will be 
expected to belong to a different population with a given probability. 
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The different pixels in an image are from different ocean surface conditions and wind 
regimes. Thus, to be able to successfully determining the appropriate ν, it is necessary 
to define an appropriate sample size (window) that can be used in the estimation. The 
window should be large enough to provide a stable estimate and small enough to be 
regarded as homogenous. Choosing a too small window, it is possible that the 
presence of a large enough vessel could influence the statistics to such an extent that it 

n 
time as little as possible. Many different methods to determine ν have been proposed 
in the literature. Methods based on moment estimates are discussed in (105). The ML 

R image with 8500 x 7000 pixels, we would expect 
approximately 6 pixels to be wrong classified as vessels. The required false alarm rate 

would not exceed the resulting threshold limit. It is important to make the calculatio

approach provides the optimum parameter estimates. The ML approach is 
computationally very intensive and impractical to use. The solution must therefore be 
obtained numerically or by developing an alternative estimation scheme.  
 
After determined a suitable PDF and ν, one may set a threshold that supports 
detection with a CFAR. The threshold intensity, IT, is determined by integrating the 
PDF, pX(I): 

 ∫=
TI

T dxxp
0

)(η  (6.1) 

where ηT is the specified probability of false alarm, e.g. (1/10-7). With this value, for a 
typical ENVISAT ASA

is:  

 ∫−= dxxpCFAR
0

)(1  (6.2) 

It is important that the CFAR threshold value is adaptive to how the ocean backscatter 
changes with incidence angle and with different ocean regions. Thus, it is important to 
choose appropriate sub swath width to minimize the change in mean backscatter from 
the ocean across the sub swath. A rule of thumb is that homogeneity in the ocean can 
not be assumed in more than 10 km x 10 km of the ocean. Non-stationarity can occur 
in smaller areas, for example in coastal areas. Thus, care must be taken when 
parameter estimation of “goodness of fit” relative to choice of sample size is carried 
out. A test must be done to determine the goodness of fit of the sample probability 
distribution to see if the estimated theoretical probability distribution fit. Two 
examples of goodness-of-fit estimators are the χ

TI

2 test and the Kolmogorov-Smirnov 
(KS) test. The χ2 statistics is given by:  

 ∑
=

 test is used to see 
how close the observed frequencies are to the expected frequencies, based on a 

−
=

N

t i

ii

E
EO

1

2
2 )(

χ  (6.3) 

N is the number of histogram bins, (N > 1), E1,…,EN are the expected frequency 
values in each bin, and O1,…,ON are the observed frequencies. The
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theoretical probability distribution. If the fit is good, the numerator is small, an
 be low, and vice ver 2

d the 
test will sa. In contrast with the χ  test, which uses the nominal 
statistical relationships between the sampled and theoretical distributions, the KS test 
uses ordinal relationships on unbinned data. The maximum difference between the 
sampled and theoretical cumulative distributions is estimated with the KS test: 

 )()(
max

xSxP
x

D M−
∞<<∞−

=  (6.4) 

Compared with the previously implemented model of the OFW, improved 
performance of ship targets is observed. Only a small number of preliminary 
RADARSAT-1 images were examined. A more general and simpler model may be 
more appropriate for tasks that will be performed by the OFW in the future.  

6.4 oach to Ship Detec An Automatic Appr tion in Spaceborne 
magery: An Assessment of Ship 

 using RADARSAT (344) 

Precise and rapid reconnaissance of ships in coastal areas is vital for shipboard self- 
efence systems, ASW (Anti-Submarine Warfare), mine-hunting, and clearing 

systems. The paper examines the ship detection capability using various 
RADARSAT-1 SAR imaging modes. In addition, an automated procedure for ship 
and ship wake detection in SAR images is presented. Three approaches are examined 
for ship detection: 1) The combined Neural-Network-Dempster-Shafer (NNDS) 

g the K-distribution, and 3) Mathematical 
Morphology (MM). The multi-stage procedure can be used depending on 

ic features. The NNDS algorithm is the most computationally efficient. 
ompared with visual interpretations, the NNDS algorit

 incorporates neighbouring information and signal amplitudes fo
d for SAR imagery with low signal-to-clutter 

omputationally efficient, and is better than the 
 to detect hard targets in clipped or thresholded im

commended to use the K-distribution for scene-segme
hich have high possibility of including targets. Then the NNDS can be used to get 

Synthetic Aperture Radar I
Detection Capability

d

morphology, 2) a statistical approach utilizin

requirements, computational resources, and scene composition. The methods differ in 
complexity and computational efficiency. The localized K-distribution can be used for 
scene segmentation and identification of scenes with possible ship targets. The 
coupled NNDS detection system is used to analyse the scene in more detail and for 
accountability of probabilities of occurrence of targets in conjunction with other 
ocean
C hm detects 97 % of the ships. 
The MM algorithm r 
target detection, and thus it is better suite
ratios. The algorithm is simple and c
NNDS algorithm agery. It is 
re ntation to identify regions, 
w
the more precise location of the ship.  
 
RADARSAT-1 images with different imaging geometry and beam modes were used 
to test the proposed methods. The Standard beam is much better for ship detection 
than the ScanSAR-narrow beam (due to poor radiometric resolution). At higher 
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incidence angle the Standard beam S6 is recommended due to low clutter levels and 
high spatial-radiometric resolution. It is shown that it is possible to determine the 
ship’s localization and extract the ship size and heading. The ship size tends to be 
overestimated by at least a factor of 2 for ScanSAR and 1.4 for Standard imagery. 
This depends on the azimuth viewing angle.   

6.5 An Automatic Ship Detection System Using ERS SAR Images 
(404) 

 Automatic Ship Detection (ASD) 

 ASD if the distance between the 
. m

.6 Automatic Detection for Ship Targets in RA

indow is used. An assumed land pixel is placed in the centre, and 
a filter examines the 360 neighbouring pixels. The centre pixel is considered a true 

s. A 
 land 

region. If more than 5 neighbouring pixels of the 24 pixels around the centre pixel are 

This paper presents the main algorithms in an
system. The system is mainly composed of a ship detector and a wake detector. The 
morphological filter in the post-processing procedures improves the detection 
accuracy and decreases the false target detection. The scan line based seed cluster 
algorithm is used to identify ships. The wake detection procedure is done much more 
quickly in the ASD by using the localized Hough transform compared to the 
conventional Hough transform.  
 
Two ships can be mis-identified as one ship in the
two ships is less than three pixels Esti ation of ship parameters like the ship’s 
length, direction, position, orientation and speed are also done. The results are 
considered reasonable.  

6 DARSAT SAR Images 
from Coastal Regions (384) 

The paper describes and assesses an automatic ship detection model using 
RADARSAT-1 SAR images. The program has been developed in the C programming 
language and UNIX operating system. It uses a moving window for ship detection. 
The algorithm first discriminates the land regions in a coastal image. A 19 pixels by 
19 pixels moving w

land pixel if more than 47 neighbouring pixels are possible land pixel
morphological filter (5 pixels by 5 pixels moving window) is used to extend the

possible land pixels, then all pixels in the window are considered land pixels. When 
sea and land have been separated, the next step in the algorithm is to detect ships in 
the sea region. The main problem of detecting ships in the sea region is to determine 
an analytical solution of the threshold value IT. The threshold value is determined by 
integrating (3.10) to obtain (6.1). A morphological filter (7 pixels by 7 pixels moving 
window) is applied to eliminate the false ship pixels. Each image pixel examined is 
placed in the filter centre, and then the filter examines the 48 neighbouring pixels. The 
centre pixel is considered a ship pixel if more than 7 neighbouring pixels are possible 
ship pixels. SAR images with 16 bits were used to test the model.   
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6.7 Automatic Detection for Ship Targets in SAR Imagery Using 
PNN-model (382) 

This paper describes the current process made on an automatic model for detection of 
ship targets. Using an image processing technique and a statistical method developed 
the model. It is an efficient method for data classification. The statistical Probabilistic 
Neural Networks (PNN) model is based on a non-parametric approach to estimate the 
Probability Density Function (PDF). The function is based on more statistical 
descriptions without using fixed parameters. It gives a good fit for gray-level image 
histograms of SAR images and smoothed estimated PDF. Thus, it is an efficient 
method for data classification, and it gives a good fit for gray-level image histograms 
of SAR images. Thus, the PNN-model is chosen for ship detection in SAR images 
instead of other statistical models like K-distribution and Gamma distribution. The 

 E
• D

del has its roots in the Parzen window model. The Parzen window model 
is a a ggests superposing a 
ker  rzen model 
ses the Gaussian distribution as a weight function, which is centred on each point of 

algorithm is divided into three steps (see Figure 6.1): 
• stimating parameters 

etermining the threshold level 
• Identifying ship targets 
 

 

 

Figure 6.1 The ship detection algorithm 

The PNN mo

Input Image Output Image 

 
 
 
 
 

Statistics Model
(PNN) 

Thresholding 
(CFAR technique) 

Filtering  
(Morphological Filter) 

 cl ss of kernel-based techniques for estimation of PDF. It su
nel function, on each data point, which occupies a fixed volume. The Pa

u
the training. The Parzen’s window PDF is a linear combination of N Gaussians given 
by:  

  ∑
=

=
N

n
n xxG

N
xp

1
))(,(1)( σ  (6.5) 

σ is the width of each Gaussian, and  

 2

2

2
)(

2
1))(,( σ

σπ
σ

nxx

n exxG
−

−
=  (6.6) 

 
How to estimate σ is not easy, and the computational complexity is another 

an .2. 
Each da . The learning set, 
disadv tage. The PNN architecture for one class of data is illustrated in Figure 6

ta point is entering the network through the input layer
which corresponds to many random points from the original image, is stored in the 
pattern layer. The values of the pattern layer are summed in the output layer.  
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Figure 6.2 PNN model for one class of data.  

The image is divided in small windows of size p x l (typical values of p and l are 3). 
The learning set is chosen randomly from the p x l window. A learning histogram can 

 a 
 

The lear to train the PNN, which results in a “learn historgram” (Hl). 

be constituted with the selected pixels, and the comparison data is chosen to be
median value of the resting pixels of the window (obtained using a median filter). 

ning set is used 
The learning procedure is done for each half value of σ, σ = 0.5, 1, 1.5,…, 9.5. Hl is 
compared to the “test histogram” (comparison data) for each value of σ. The σ-value, 
which gives the best minimum error, Ep, is chosen: 

  lqp HEE ∆+= η  (6.7) 

where Eq is the quadratic error given by: 

 ∑ =
−=

N

n ltq nHnHE
1

2))()((
2
1  (6.8) 

The Constant False Alarm Rate (CFAR) technique is based on the PNN-model. The 
CFAR detector makes target-in-clutter decision in high-resolution SAR images, and it 
is used to improve the ship target detection performance. Compared to the widely 

f 
processo evelopment of the 
research in (193).  

 is generated under the program, which is a list of ship locations.  The 
algorithm uses changes in the local statistics to automatically detect ships. A local 
window is moved through the image, which determines statistically different regions. 
The algorithm is based on the CFAR approach. The mean over a small region is 
calculated as well as the mean and the standard deviation over an enclosing 

used K-distribution model, the PNN-model has given promising results in terms o
r and computation time. The research in this paper is a d

6.8 Automatic Detection of Ships in RADARSAR-1 SAR Imagery 
(437) 

The Alaska SAR Demonstration Program that was initiated by NOAA/NESDIS has 
the goal of “demonstrating the utility of RADARSAT-1 C-band SAR imagery to 
provide useful, timely environmental and resource management information to users 
in Alaska”. The paper describes the algorithm developed to generate one of the 
products that
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background region. If the signal mean is statistically different than the background, 
the mean values are compared.   

r a single detection. It 

utomated Ship 
Detection in SAR Imagery (371) 

onitoring 
Workstation’s (OMW) ship detection algorithm applied to SAR data and the choice of 

stics. 
The goa rithms. Focus has also 

e in Atlantic Canadian Waters in June 1998. Previously collected 
statistics are also taken into account.  

6.10  Multi-Pass RADARSAT-1 

 
Ships longer than 35-41 m can be detected using low-resolution imagery (100 m 
sample spacing) with threshold of 5.0. There were 105 ships out of a total of 272 in 
the test set longer than 35-41 m. This limit is dominated by the sample spacing. The 
false alarm rate was 0.01 % for a single detection. Using high-resolution imagery (50 
m sample spacing) makes it possible to detect ships longer than 32 m (124 ships out 
of a the 272). In this case, the false alarm rate was 0.002 % fo
takes approximately 10 minutes to run the completely automated algorithm on a 
ScanSAR Wide B Mode image. The algorithm uses a threshold of 5.0 for the 
detection statistics. 

6.9 Comparison of Probability Statistics for A

The OMW is a commercial software suite. It is essentially a Constant False Alarm 
Rate (CFAR) filter, which provides modules for automated vessel detection, oil spill 
monitoring, and environmental monitoring. The paper presents the Ocean M

probability distribution and methodologies for calculating scene specific stati
l in the project has been to fine-tune the OMW algo

been on false alarm rate of each algorithm. The results are compared using a 1-look, 
k-distribution function with various parameter choices and estimation methods. Two 
methods, which are used to fit the k-distribution to empirical data, are compared and 
contrasted:  

• Estimates based on Mean and Variance (MV) of the data 
• Estimates based on Mean of the data and Mean of the Log (MML) 

 
The application of a χ2-distribution is discussed as a special case of sea clutter 
statistics. The MML algorithm usually produces more false targets than the MV 
algorithm (at a CFAR of 10-8). The χ2 algorithm produces most false targets. The 
MML algorithm detects most of the targets that were visually detected by a trained 
military operator. Thus, the MML algorithm is the best compromise between 
detecting all significant targets and rejecting false targets. The SAR data used are 
collected with RADARSAT-1 during the Maritime Command Operation Training 
(MARCOT) exercis

Context-Based Target Detection with
Data – Application to Coastal Surveillance (388) 

This paper presents a data fusion simulation test bed. It demonstrates the fusion of 
target related features obtained when processing SAR imagery and information 
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provided by other non-imaging sensors. The test bed’s objective is to examine which 
conditions give the most complete description of the scene and the most precise 
identification of the surrounding targets. These projects were used to demonstrate how 
the incorporation contextual information could be used to improve the Target 
Detection/Target Recognition (TD/TR) algorithms.  
 
Based on the results from the data fusion projects, the paper proposes to develop a 
methodology for change monitoring based on the fusion of contextual features 
extracted from multi-pass imagery. The main aspects and results obtained by the 
proposed approach are described. The data is collected over the Stephenville Bay 
Arena in Newfoundland.  

6.11 Detection of Ships Using Cross-Correlation of Split-Look SAR 
Images (375) 

ery. 
The trad  of pixel intensity between ship and 

tection of Ship 

The pa
hom
of non
descrip  segmentation 
pro
data is
method
SAR i sting the described approach indicated improved ship detection 
cap

This paper focuses on the problem of the presence of sea clutter in coherent imag
itional approach is to utilize the difference

sea clutter, but these methods are not efficient in high sea states. A new technique, 
which is based on cross-correlating split-look SAR images, is proposed in the paper to 
solve this problem. The degree of mutual correlation increases if the inter-look images 
consist of the correlated images of a ship and clutter. The ships can be identified from 
the difference in correlation. Using this method, it is possible to detect ships without 
using the pixel intensities. This method was applied on RADARSAT-1 images 
(Standard mode, 30 m resolution) in fairly calm sea state (ships could be identified 
with the naked eye), and the minimum detectable ship length was 62.6 m. Further 
study is required in high sea states.    

6.12 Exploiting the Polarimetric Information for the De
Targets in Non-Homogeneous SAR Images (430) 

per presents an approach for ship detection in polarimetric SAR images of non-
ogenous ocean areas. It is necessary to extract the image structure and the impact 

-homogenous sea features on the False Alarm Rate. The paper also gives a 
tion on how false alarms can be controlled by polarimetric

cedures that cooperate with high-resolution polarimetric detection features. Real 
 used to test polarimetric segmentation-plus-detection procedures to see if the 
 used in the project is satisfactory to utilize the polarimetric information in the 

magery. Te
abilities. 
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6.1

This pa
encountered in the past. A novel mathematical technique of neural-based neural 
netw
physica
The c ty without 
con
 
Applic
images cessfully detected small, low-signature 
targ
single-

riori knowledge, multi-pixel models can be developed.  
 

 
ese 

models a ribed. Examples of real-world applications are presented.     

ed with high speckle peaks. The paper presents a 
proposed solution to this problem; optimal target detection based on radiometric 
riteria. The LRT (Likelihood Ratio Test) permits to choose between tw

and can be used if the target can be modelled by a Gaussian circular signal. This leads 
mal

lex imag ion of the radiometry. The paper 
resents an example of a complex fine mode RADARSAT-1 image used for ship 

The paper presents the neural clustering scheme “Probabilistic Winner-Take-All” 
(PWTA). It is applied to image segmentation, and the desired properties for image 
segmentation is examined. The PWTA adapts the form of cluster-conditional 

3 Model-Based Neural Network for Target Detection in SAR Images 
(422) 

per discussed mathematical difficulties of combining a priority with adaptivity 

ork is introduced. The adaptive model combines a priori knowledge of the 
l laws of electromagnetic scattering with adaptation to the actual environment. 
ombination is achieved with linear computational complexi

sidering multiple combinations of models and parameters.  

ations of this model for target detection in Synthetic Aperture Radar (SAR) 
 are discussed. The model has suc

ets in heavy clutter environments. The model was also successful demonstrated in 
pixel detection of resolved multi-pixel targets. By combining adaptivity and a 

p

The principles of SAR are briefly described, relatively simple physics-based models
of SAR signals are derived, and finally model-based neural networks that utilize th

re desc

6.14 Optimal Target Detection Using One Channel SAR. Complex 
Imagery: Application to Ship Detection (408) 

Point targets often have higher radar reflectivity than the cluttered background. Due to 
the speckle, the backscattered signal has high variability, especially with one-look, 
and point targets may be confus

c o hypotheses, 

to a radiometric criterion algorithm. Opti  radiometric estimation by means of 
Spatial Whitening Filter (SWF), which also takes spatial correlation into account, can 
be used in comp es to optimise the estimat
p
detection that was acquired over the coastal town Toulon, France on September 2nd, 
1997. The sea state was very calm and the wind was low. Some targets are easily 
recognized, while others are more difficult to detect. Thresholding makes the 
detection easier.     

6.15 Probabilistic Winner-Take-All Segmentation of Images with 
Application to Ship Detection (418)  
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probability density function while clustering proceeds, and thus avoids 
n of clusters. T

under-
utilizatio he probability of being adapted for an input vector that is 

6.16 Results from the Ocean Monitoring Workstation (OMW) Dark 

The Oc  (OMW) extracts marine information from 

 (as written in the paper):  

 

sufficiently far from its mean decreases if a cluster gets adapted frequently. To be able 
to utilize the spatial continuity of image regions and improve the PWTA segmentation 
performance a modification to PWTA is introduced. The spatial continuity of image 
regions is utilized through the inclusion of a priori probabilities. The probabilities 
depend on the input feature space, and are estimated for each image pixel. 
Segmentation of airborne SAR images is used to demonstrate the effectiveness of 
PWTA for ship detection. An approach is proposed to find the suitable number of 
clusters required for ship detection. 87.5 % of the ships are being detected using the 
PWTA. The scheme gives significantly better results than four other segmentation 
techniques, 1) K-means, 2) Maximum Likelihood (ML), 3) Back Propagation 
Network (BPN), and 4) histogram thresholding.  

Feature Detection Algorithm (433) 

ean Monitoring Workstation
RADARSAT-1 SAR ocean images. Examples of applications are ship detection, 
calculation of two-dimensional wave spectra, extraction of wind vector information, 
classification of ocean features, and detection of dark features such as oil spill and 
natural biological slicks. Before the exercise, described in this paper, the ship 
detection configuration parameters were tuned as a function of the CDPF (Canadian 
Data Processing Facility) product and beam mode (115). This paper presents a similar 
exercise to define a set of parameters for the dark feature detection algorithm as well 
as to make recommendations to improve the algorithms. Results from the wind 
retrieval algorithm are also presented. The following conclusions and 
recommendations are given in the paper

1. A routine to merge fragmented slicks based on a proximity flag and distance 
parameter should be implemented to reduce the number of small slicks 
detected and to provide a more accurate account of the slick size.  

2. Imagery should be processed through the OMW wind retrieval algorithm 
together with the dark feature detection algorithm. Oil slick results should be 
interpreted in the context of the wind products and vice versa.  

3. The dark feature algorithm has limited reliability. The incorporation of other 
slick and edge detectors, such as texture and wavelet-based algorithms, as well 
as the used of classification techniques, should improve the utility of the 
algorithm. 

4. The configuration parameters suggested above provide a general starting point 
for operation of the algorithm. Several of the parameters (in particular the 
minimum and the maximum areas and the target threshold) may need to be 
iteratively modified on a case by case basis, especially if ancillary oil slick
data and wind speed information are available.  
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5. The OWM configuration routines for dark feature detection should be 
redesigned so that the Threshold Win Wd and Threshold Win Ht 
parameters are specified in distance, not pixels. This will avoid the necessity 

7. The wind retrieval algorithm calculates wind vector information for the pre-set 
m2 in size. A “frame size” parameters should be included in 

the configuration parameters set so that the value can be modified based on 

emoved.    

6.17 Model 
(419) 

These 
radar r
and gr e both the target 
type and pose are developed based on this model. The direct extension of the 

profile

 

of dynamically changing these parameters based on CDPF product type and 
beam mode. 

6. We suggest that the dark feature detection algorithm Minimum Area and 
Maximum Area configuration parameters, as well as the area of the dark 
features output in the products, be specified in km2 rather than m2. 

frames of the 25k

CDPF product type and beam mode. 
8. The maximum wind speed which can be calculated by the wind retrieval 

algorithm is currently hardwired to 15 m/s. This hardlimit should be r
 

SAR ATR Performance Using a Conditionally Gaussian 

The paper presents a family of conditionally Gaussian signal models for SAR images. 
models are an extension of a class of models developed for high-resolution 
ange profiles. The target type and the relative orientations of the sensor, target, 
ound plane parameterize the model. Algorithms that estimat

conditionally Gaussian model used successfully to model high resolution radar range 
s (377)-(379) is given by:  

∑
⎤

⎢
⎡

−+Θ−=Θ ii
rNaKarl

2

0,
|)),(ln(),|(

⎥
⎥
⎦⎢⎣ +Θi ii

i

NaK 0, ),(
|  (6.9) 

K is the diagonal covariance matrix, ),|( arl Θ is the log-likelihood function, a is the 
ype, and ),(, aK ii Θ is the covariance matrix.  target t

 

The rec
onditio  under configuration 

e
incorpo

ecogn

Results of performance on data from the MSTAR (Moving and Stationary Target 
Acquisition) program for target pose estimation and target recognition are presented. 

ognition rates are over 97 % for a ten class problem under standard operating 
ns, while the rates are 81 % for a four class problemc

operating conditions, and 79 % for a four class problem under version variation 
extend d operating conditions. The configuration and version variants can be 

rated into one model. This model gives good ATR (Automatic Target 
ition) performance for the test data.  R
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6.18 
7) 

also de
adequate control the false-alarm r  non-homogeneity and non-gaussianity 
characteristics of backscattering from the sea by applying the standard 2D-CFAR 

stage is
applied d can be set to achieve the 
desired false alarm rate by using the derived approximate CFAR techniques against 

high-re
ts show that the scheme gives very high probability for ship detection and that the 

6.19  Detection by the RADARSAT SAR: Validation of Detection 
Model Predictions (435) 

clutter 
peeds ncidence angle. To improve ship detection probability, larger 

n

signatu e secondary indicator, 

t

statistic
of the RADARSAT-1 SAR, as well as it compares the different beam modes of 

R 
 

detectio
March/ -1 SAR ship 

• ARSAT-1 ocean images. 
• imple model for ship cross-section is within the correct order of magnitude. 

Segmentation-Based Technique for Ship Detection in SAR 
Images (40

The paper describes a segmentation-based ship detection scheme in SAR images. It 
als with the typical features of sea clutter. It is shown that it is not possible to 

ate for

schemes on low- and high-resolution SAR images. An appropriate first segmentation 
 proposed as an alternative, which allows standard CFAR techniques to be 
 inside homogenous areas. The detection threshol

non-gaussian clutter. A set of low-resolution quick-look ERS SAR images and a set of 
solution single-look X-SAR/SIR-C images are used to test the scheme. Both 

se
false alarm rate is low.  

Ship

A well-known problem for ship detection is the sea background clutter. The sea 
increases and the ship detection probability decreases with increased wind 
and decreasing is

incide ce angles should be used. Analyses of the use of ERS-1 SAR data for ship 
detection have shown considerable success. The approach of first using the ship 

r  as the primary ship indicator, and the ship wake as the
has been used in Norway. Analyses of the ship wake may give additional information 
about the ship and its velocity. This approach is attractive because it provides a 

ical basis for selecting a CFAR. theore
 
RADARSAT-1 operates in the C-band with HH-polarization. The paper describes a 

al approach for analyses of ship detection performance in a clutter background 

RADARSAT-1 SAR. The RADARSAT-1 SAR model includes ocean clutter, image 
PDF, and ship cross-section elements. To be able to detect smaller ships, low wind is 

ry, high-resolution image, as well as large incidence angles. The ScanSAnecessa
Narrow Far mode is a good compromise between the spatial coverage and detection
probability. Data has been collected during a RADARSAT-1 SAR ship 

n/validation field program held off the coast of Halifax, Nova Scotia in 
pril 1996. The data was used to validate the RADARSATA

detection model, and the results are excellent. It was shown that the: 
• Hybrid C-band HH-polarization cross-section model is excellent for the 

conditions encountered. 
-distribution is a suitable PDF for RADK

S
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• Model tends to underestimate the ship cross section especially at larger 
incidence angles. 

 
A Figure of Merit (FOM) has been defined in for a minimum detectable vessel size as 
 function of incidence angle, for a wind speed of 10 m/s and a radar look direction 

compar
select t AT-1 beam modes based on surveillance requirements 
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7.2 Composite Filters for Inverse Synthetic Aperture Radar 
Classification of Small Ships (466) 

per discusses pattern recognition of small ships in InThe pa verse Synthetic Aperture 
adar (ISAR) images, which is a distortion-invariant pattern recognition problem.  

(weigh
used. A
ISAR s

1. n average filter (average of training images). 

3. 
 

ew concepts were provided: 

• 

• se of a new output criteria where a filter in a bank of filters is best for class 

• 
• Use of voting over a time sequence of test inputs 

The in
filters are presented. The average filter performs best for the initial data used. 

ormalized correlation data is used to be able to utilise the largest correlation output 

.3 egian) (455) 

of the 
and an ocean area outside the French-Belgian coast are used. The input to the 
algorithm is a small segment of a SAR image (50 pixels x 50 pixels) and an angle that 

of 825 
- asking out land in the image. 

- 
- 
- Classification of the ship is carried out. 
- The results are printed out.     

 

R
New range alignment (weighted correlation range) and new motion compensation 

ted multiple scatterers) of standard image formation steps were developed and 
n algorithm was developed to find out if the satellite image was useful for 

hip detection. Three different types of filters were considered:  
A

2. The Standard Discriminant Function (SDF) filter 
The standard Minance filter 

N
• Use of a validation set is vital, and should be more widely used.  

A goodness measure to select filter parameters and to determine the advance if 
the filter is expected to perform well.  
U
determination. 
Rejection of decisions on some poor test input images 

 
itial results from ISAR ship detection using distortion-invariant (composite) 

N
for classification with average filters.   

Classification of ships in SAR images (In Norw7

The thesis focuses on classification of ships in SAR images, and it is a development 
work done by Eldhuset at FFI (298). Seasat images over part of the Oslofjord 

state the direction of the ship. The segment only contains one ship, and covers an area 
m x 825 m. The algorithm has the following steps: 
M

- Ship detection is done. 
Ship wake detection is done. 
Estimation of the ship’s speed and direction is performed. 
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The classification depends on knowledge of the ocean and the ship. The filtering and 
ld of the picture ar based on the ocean and the ship’s distributions. The 
g is done because of the speckle to be a

thresho e 
filterin ble to even out the ocean background as 
much as possible. The sigma-filter gives good results for this purpose. The threshold, 

be calc
weakes e ship is split into three regions, which can have weak or 

n, and this gives seven different ship classes. Warships have largest 

has larg
implem am, and then it is possible to separate all seven different ship 

pes. The parameterisation has been mentioned theoretically, and it is described how 

7.4 erization Using Polarimetric SAR 

The Sy
(258) i ethod is very 
promising for characterization of ships. It is possible to identify the ship elemental 

a ship 
used to  ships at different wind and sea conditions. It is possible to obtain 
accurate ASP’s (Anne S Pierce) pitch angle under these wind and sea conditions by 
identifying such ship targets with significant symmetric scattering. The SSCM 
strongly depends on the signal phase of the peak signal, and it is very sensitive to the 
system focus setting and Doppler centroid shift. Before applying the SSCM, these 
errors should be removed.  

7.5 Vessel Classification as Part of an Automated Vessel Traffic 
Monitoring System Using SAR Data (461) 

The paper presents research that has been done to investigate the feasibility of an 
automated Vessel Traffic Monitoring System (VTMS) using spaceborne SAR data 
collected over the Dover Strait. The automated VTMS has two primary goals. The 
first one is to “develop a system for the surveillance of vessels carrying hazardous 
cargo around the coastline of the British Isles”, while the secondary goal is to 
“monitor fishing vessels around the British shores”. The VTMS gives the users 
information about location, speed, heading, length, width and class of vessel. The 
algorithm development is separated into detection and classification. The vessel pixels 
are separated from the background sea clutter and land regions in the detection part. 
The actual vessel pixels are analysed in the classification part to provide information 
on the type and structure of the ship.  

which is used to remove the sea pixels, is based on an average value of the sea (should 
ulated locally). The threshold removes all sea pixels, but also some of the 
t ship pixels. Th

strong reflectio
reflection in the middle, a tanker largest reflection in the back, while an ore-carrier 

est reflection in the back and the front. The template matching for each ship is 
ented in the progr

ty
it can be implemented.      

The SSCM for Ship Charact
(464) 

mmetric Scattering Characterization Method (SSCM) that was introduced in 
s used to characterize ships. The results indicate that the SSCM m

targets of significant maximized symmetric scattering component, and thus providing 
specific distribution of “permanent” scattering targets. This information can be 
 identify
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8.2 on of Ships with Multi-Frequency and CODAR SeaSonde 

This p
system ese systems are 
designed to measure environmental ocean features like ocean currents, waves and 

Measur
measurements over Lake Michigan.  

The pa
first ti requency) radar over 
freshwater lakes. The echoes from ships are determined, and it is shown that the 

ships in
consist d. The ships’ echoes in the Doppler 

ectrum are compared to those of the first-order ocean Bragg scatter. The maximum 
nges for ship detection, for radar cross-sections of approximately 50 dBsm (at 25 
Hz) are estimated to be 15-20 kilometres with the MCR HF radar system. Ship 

stimates that are made simultaneously from both CODAR SeaSonde and MCR 
stems illustrate higher SNR (Signal to Noise Ratio) associated with the CODAR 

eaSonde systems. Signal stationarity, frequency diversity, and peak tracking are used 
 separate ships from other targets and other noise sources within echoes received 
om both types of radar systems.   

.3 Ship Detection With High-Frequency Phased-Array and 
Direction-Finding Radar Systems (469) 

The use of High Frequency (HF) radar systems for detection and monitoring of ship 
and fishing vessel activity is described in the paper. Data used in the experiment was 
collected during the fall of 1997 south of Chesapeake Bay during the third 
Chesapeake Outfall Plume Experiment (COPE-3). CODAR SeaSonde and multi-
frequency HF radar systems are used. The presence of large tank ships is illustrated. 
The ability of HF radar to detect and track ships within a near coastal region is 
demonstrated by comparing data from both radar instruments with ancillary 
observations. The problem of echoes in multi-frequency HF radar data is addressed, 
and an approach to remove ship echoes is suggested. A comparison of the ship echo 
power to the ocean echo power in the Bragg region has shown that the tanker ships’ 
RCS are between 40 dB to 60 dBsm. The effects of ships can be examined in greater 
detail, by using the combination of multiple HF radar systems and observations on the 
ground.  

Detecti
HF Radar Systems (470) 

aper focuses on the CODAR SeaSonde (which is a high-frequency radar 
) and Multi-Frequency Coastal Radar systems (MCR). Th

winds, in addition to being able to detect ships and other discrete subjects. 
ements have been done on the east and west coasts of the USA, in addition to 

 
per measures ship echoes within Doppler spectra. The data indicates, for the 
me, the possibility to detect ships with HF (High F

positions measured with HF radar are consistent with visual and GPS observations of 
 the region observed. The radar cross-section values that are measured are 

ent with experimental values obtaine
sp
ra
M
e
sy
S
to
fr

8
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00 Nautical Mile Exclusive Economic Zone 
g High Freq urface Wave Radar (HFSWR) (473) 

It is require  tio s abli ntain , ent 
and Environm Exclusive Economic Zone (EEZ). The EEZ 
is defined as 200 nautical miles (nm) where a country is granted sovereign rights by 
the United Nations Convention on the Law of the Sea (UNCLOS). The EEZ is much 
la e 
available to monitor this new frontier? The paper presents the High Frequency 
Surface Wave Radar (HFSWR), which has the spatial and temporal resolution needed 
for this purpose. The HFSWR is developed and demonstrated to monitor activity 
within the 200 nm EEZ in a collaborative and cost-shared project between the 
C l Defence and Raytheon Systems Canada Limited. 
The HFSWR is proven to be an effective tool for providing all weather, surveillance 
o The development of a network of two 

Rs and an Operational Control Centre, measurements of the systems 
erform

p
system started operating in January 1999.  
 
The area coverage is good, and ships are tracked throughout the defined area of 
coverage (25 nm 200 degrees azi th). C ntinuou
vessels is performed, from the first detection until ey le e the 
exceed their maxi nge. The track accuracy is better th
range, 0.25 degree in azim s in locity The t
achieved when sensor data is combined such that the HFSWR ma t 
identity with the radar track.  
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