SJØFORSVARETS VERNEDRAKTER - UNDERSØKELSE AV VERNEEVNE OG EFFEKT AV LAGRINGSFORHOLD

RØEN Bent Tore, ENDREGARD Monica

FFI/RAPPORT-2001/02284
SJØFORSVARETS VERNEDRAKTER -
UNDERSØKELSE AV VERNEEVNE OG EFFEKT
AV LAGRINGSFORHOLD

RØEN Bent Tore, ENDREGARD Monica

FFI/RAPPORT-2001/02284

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
Postboks 25, 2027 Kjeller, Norge
NBC-protective suits used by the Norwegian Navy (SM3) have been examined. The aim was to investigate the possible effect of storage conditions on the protective properties. Four suits had been stored onboard vessels. The integrity of the packaging of these suits varied from undamaged to totally rended. These suits were compared to three suits that had been stored under stable conditions onshore with their sealed packaging undamaged. The protective properties were checked using liquid sulphur mustard (HD) as a contaminant, contamination load 10 g/m². The protection requirement is that the accumulated penetrated amount of HD 6 hours after exposure shall not exceed 4 µg/cm². The suits stored under stable conditions gave a penetrated amount of HD from 0.5 to 0.8 µg/cm² after 6 hours and from 1.0 to 1.7 µg/cm² after 24 hours. For the suits stored on vessels the penetrated amount varied from 1.7 to 2.0 µg/cm² after 6 hours and from 2.3 to 2.7 µg/cm² after 24 hours. Hence, these suits offer an excellent protection against HD up to 24 hours after 7-10 years storage. There was no correlation between the condition of the packaging and the total penetrated amount of HD. The conclusion from this study is that there is no need to replace suits with a damaged packaging. It is sufficient to mend the packaging.
INNHOLD

<table>
<thead>
<tr>
<th>Side</th>
<th>INNHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUKSJON</td>
</tr>
<tr>
<td>2</td>
<td>BAKGRUNN</td>
</tr>
<tr>
<td>3</td>
<td>ANALYSEUTSTYR</td>
</tr>
<tr>
<td>4</td>
<td>VERNEDRAKTER</td>
</tr>
<tr>
<td>4.1</td>
<td>Spesifikasjoner vernedrakter</td>
</tr>
<tr>
<td>4.2</td>
<td>Testede drakter</td>
</tr>
<tr>
<td>5</td>
<td>RESULTATER</td>
</tr>
<tr>
<td>5.1</td>
<td>Vekt og tykkelse</td>
</tr>
<tr>
<td>5.2</td>
<td>Penetrasjonsanalyser</td>
</tr>
<tr>
<td>6</td>
<td>KONKLUSJON</td>
</tr>
<tr>
<td></td>
<td>Litteratur</td>
</tr>
<tr>
<td></td>
<td>Fordelingsliste</td>
</tr>
</tbody>
</table>
SJØFORSVARETS VERNEDRAKTER -UNDERSØKELSE AV VERNEEVNE OG EFFEKT AV LAGRINGSFORHOLD

1 INTRODUKSJON

2 BAKGRUNN

Sjøforsvarets vernedrakt SM3 er levert av K Stormark konfeksjonsfabrikk AS. Den består av to lag tekstil. Det beskyttende indre materialet i SM3 vernedraktene består av et filtmateriale som bærer partikler av aktivt kull. Det active kullet har egenskaper som gjør at det vil adsorbere gasser og væsker som drakten utsettes for. Beskyttelsesgraden vil derfor være avhengig av hvor mye aktivt kull som er til rådighet per overflateareal av drakten. Det ytre materialet i denne drakten er et såkalt spredende tekstil. Væskedråper spres utover på en så stor overflate som mulig. Filosofien bak dette er å hindre at dampkonsentrasjonen under en dråpe blir så høy at kullets adsorpsjonskapasitet mettes og drakten dermed slipper gjennom det kjemiske stridsmiddelet.

Hvis draktene utsettes for gasser eller væsker under lagring, vil disse kunne adsorberes på kullets overflate og dermed redusere overflatearealet tilgjengelig for adsorpsjon av kjemiske stridsmidler, noe som i sin tur vil nedsette verneevnen. Draktene oppbevares derfor i en forseglede originalforpakning av aluminium frem til de tas i bruk.

Vernedraktene som lagres om bord i Sjøforsvarets fartøy blir omplasert avhengig av hvilke fartøyer som er i tjeneste til enhver tid. Ved flytting kan de utsettes for litt tøff behandling, og det oppstår noen ganger skader på forpakningene. Hvis skadene medfører revner i forpakningene er ikke draktene lenger hermetisk lukket og de kan eksponeres for gasser som skulle finnes i omgivelserne. Om bord i et fartøy vil det ofte være en del damper fra olje og andre kjemikalier, spesielt fra maskinrommet. Naturlig degradering av aktivt kull kan også påskyndes hvis draktene ikke oppbevares i lukket atmosfære.

Selv om draktene lagres i egne rom på fartøyene, er det ønskelig å undersøke om skader på forpakningene har effekt på verneevnen. Dette er gjort ved å sammenligne verneevnen til drakter med forskjellig grad av skader på forpakningene, lagret om bord i fartøyene, med drakter som har vært lagret på land med forpakningene intakt.
3 ANALYSEUTSTYR

Den beste måten å teste verneevnen til et materiale på er ved å utsette det for et kjemisk stridsmiddel, og deretter måle hvor mye av kjemikaliet som trenger gjennom over et visst tidsrom. Dette blir gjort ved penetrasjonsanalyser.

Analysene er utført på et system som måler dampgjennomgangen av kjemikalier gjennom et materiale når det blir utsatt for kjemikaliet i væskeform. Systemet består av 16 uavhengige måleceller, og Figur 3.1 viser tverrsnittet av en slik målec celle.

![Figur 3.1 Tverrsnitt av målec celle for penetrasjonsanalyse](image)

Figur 3.1 Tverrsnitt av målecelle for penetrasjonsanalyse

En sirkulær bit av prøvematerialet blir festet på cellen med en stålring, over et åpent kammer. Stålringen har indre diameter 40 mm, slik at forsøksarealet blir 12,5 cm². En tynn polyetylenfilm (12 µm) plasseres på undersiden av materialet for å hindre bæregassen som går gjennom kammeret i å strømme ut gjennom prøven. Denne filmen har neglisjerbar absorbans av kjemikaliet. Kjemikaliet, i dette tilfellel sennepgass (HD), blir påsatt materialet i form av små dråper (1 µl). Det som trenger gjennom materialet blir fraktet i dampform med bæregassen (nitrogen) til en gasskromatograf. Denne måler konsentrasjonen av penetrert mengde kjemikalie i prøvecellene ved hjelp av en flammeionisasjonsdetektor (FID). Under en analyse måles penetrert mengde i hver celle etter tur med visse tidsintervaller. Slik får man et bilde av penetrasjons hastigheten, og total mengde penetrert til enhver tid etter påføring av kjemikaliet. Systemet forøvrig er beskrevet i detalj i rapport av 2000 (1).

For analysene beskrevet i denne rapporten var forsøksbetingelsene som følger:

Penetrant (analysekjemikalie)	10 x 1 µl væskeformig HD fordelt på 12,5 cm² (tilsvare en kontaminéringsgrad på 10 g/m²)
Temperatur	ca 22 °C (romtemperatur)
Horisontal lufthastighet over prøven	ca 0,1 m/s
Relativ fuktighet (RH)	20 – 45%
Analysetid	24 timer

Temperatur og relativ fuktighet blir ikke styrt, men følger omgivelsene i lokalet. Kontamineringsmengden på 10 g/m² er i samsvar med metode i NATO triptych AC 225/(Panel VII)/D 101.
4 VERNEDRAKTER

4.1 Spesifikasjoner vernedrakter

Spesifikasjoner innerstoff:
- Materialtype: Filtrmaterial, belagt med aktivt kull på den ene siden
- Vekt: 190 – 215 g/m²
- Tykkelse: 0,65 – 0,90 mm
- Kullinnhold: ca 45 g/m²

Spesifikasjoner ytterstoff:
- Materialtype: Sammensetning av nylon og andre fibre med ca 85% nylon
- Vekt: minst 118 g/m²
- Farge: Olivengrønn

4.2 Testede drakter

Det er gjort undersøkelser på 7 forskjellige SM3 drakter, hvorav 3 har vært lagret på land og 4 på fartøy. Originalt blir draktene vakumpakket i aluminium, men ingen av dem hadde beholdt vakuum. Draktene som var lagret på land hadde ellers ingen synlige skader på forpakningen mens draktene fra fartøy alle hadde skader på forpakningen i større eller mindre grad. Tabell 4.1 gir en oversikt over de testede draktene.

<table>
<thead>
<tr>
<th>Drakt nr.</th>
<th>Produsert</th>
<th>Lagret</th>
<th>Tilstand forpakning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desember 1990</td>
<td>På land</td>
<td>Ingen synlige skader</td>
</tr>
<tr>
<td>2</td>
<td>Desember 1990</td>
<td>På land</td>
<td>Ingen synlige skader</td>
</tr>
<tr>
<td>3</td>
<td>Desember 1990</td>
<td>På land</td>
<td>Ingen synlige skader</td>
</tr>
<tr>
<td>4</td>
<td>September 1993</td>
<td>På fartøy</td>
<td>Lang revne langs hele forpakningen</td>
</tr>
<tr>
<td>5</td>
<td>September 1993</td>
<td>På fartøy</td>
<td>En liten revne, ellers hel</td>
</tr>
<tr>
<td>6</td>
<td>Oktober 1993</td>
<td>På fartøy</td>
<td>Tre mindre revner</td>
</tr>
<tr>
<td>7</td>
<td>Oktober 1993</td>
<td>På fartøy</td>
<td>Skrammer, ingen tydelige revner</td>
</tr>
</tbody>
</table>

Tabell 4.1 Oversikt over SM3 draktene som er undersøkt
5 RESULTATER

5.1 Vekt og tykkelse

Materialet i draktene er målt mht vekt og tykkelse. Vekten er målt ved å stanse ut sirkulære biter, på 21,2 cm² fra forskjellige steder på drakten og veie dem på analysevekt. Tykkelsen av yttermaterialet er målt med tykkelsesmåler av typen MINITEST 100FN. Innermaterialet er for elastisk til å kunne måles på den samme måten, og her er tykkelsen sjekket ved å klippe ut tynne strimler av materialet, og måle dem visuelt i mikroskop. Det er gjort målinger fra fire forskjellige steder av draktene. Resultatene er vist i Tabell 5.1, oppgitt med ± 1 standardavvik av målingene, unntatt for tykkelse av innermaterialet, som er oppgitt med høyeste og laveste måling.

<table>
<thead>
<tr>
<th>Drakt nr</th>
<th>Vekt (g/m²)</th>
<th>Tykkelse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Innermateriale</td>
<td>Yttermateriale</td>
</tr>
<tr>
<td>1</td>
<td>209 ± 8</td>
<td>134 ± 4</td>
</tr>
<tr>
<td>2</td>
<td>209 ± 4</td>
<td>133 ± 5</td>
</tr>
<tr>
<td>3</td>
<td>208 ± 4</td>
<td>131 ± 1</td>
</tr>
<tr>
<td>4</td>
<td>210 ± 12</td>
<td>115 ± 2</td>
</tr>
<tr>
<td>5</td>
<td>208 ± 5</td>
<td>113 ± 3</td>
</tr>
<tr>
<td>6</td>
<td>208 ± 5</td>
<td>117 ± 2</td>
</tr>
<tr>
<td>7</td>
<td>213 ± 9</td>
<td>121 ± 3</td>
</tr>
</tbody>
</table>

Tabell 5.1 Resultater for målinger av vekt og tykkelse av draktmaterialene

For innermaterialene er vekten tilnærmet lik mellom draktene, og ligger innenfor de oppgitte kravspesifikasjonene. Den målte tykkelsen ligger over det som er oppgitt i kravspesifikasjonene, men målingene kan ikke sammenlignes direkte fordi det i spesifikasjonene henvises til en metode hvor det skal utøves et visst press på materialet når tykkelsen måles. De tre draktene som var lagret på land, og som har et annet produksjonsår enn draktene lagret på fartøy hadde litt mer komprimert innermateriale.

Hos yttermaterialene ser man en klar forskjell mellom de tre draktene som var lagret på land og de fire andre, både i vekt og tykkelse. Tre av draktene som var lagret på fartøy hadde vekt i underkant av spesifikasjonene. Dette tyder på en viss kvalitetsforskjell i yttermaterialet mellom de to produksjonssårene.

5.2 Penetrasjonsanalyser

Fra hver drakt ble det stanset ut åtte sirkulære biter for analyse, fire forskjellige steder fra anorakk og bukse. Prøvene ble analysert som beskrevet i Kapittel 3.

Figur 5.1 viser resultatene fra analysene i form av penetrasjonshastighet som funksjon av tid etter eksponering, mens Figur 5.2 viser totalt penetrert mengde HD som funksjon av tid etter eksponering (integreerte verdier av kurvene fra Figur 5.1). Kurvene i figurene representerer gjennomsnittet av de åtte parallellene for hver drakt.
Figur 5.1 Diagram over penetrasjonshastighet av HD som funksjon av tid etter eksponering.

SM3 draktene har som nevnt et spredende yttermateriale, som gjør at dråpene med HD som påsettes spres umiddelbart utover materialet. Slike yttermaterialer gir som regel et karakteristisk penetrasjonsforløp som man ser i Figur 5.1, hvor penetrasjonshastigheten er høyest de første
timene for så å avta og stabilisere seg på et lavere nivå. Kurvene viser en klar forskjell mellom draktene som har vært lagret på land (1-3) og draktene lagret på fartøy (4-7) de første timene etter eksponering. Draktene som har vært lagret på fartøy slipper gjennom mye mer de første to timene, før penetrasjonshastigheten gradvis synker til samme nivå som for draktene lagret på land. Det er imidlertid ingen sammenheng mellom hvor store skader det var på forpakningen og hvor mye draktene slipper gjennom. Det er kun små forskjeller mellom de fire draktene som var lagret på fartøy, selv om drakt nr 4 hadde en forpakning som var fullstendig revnet mens drakt nr 7 hadde en forpakning uten synlige revner. Den eneste synlige forskjellen var at drakt nr 4 var blitt materre i yttermaterialet, og at dråpene med HD spredde seg mer utover enn hos de andre draktene, uten at dette ser ut til å ha påvirket resultatet.

![Figur 5.3 Kurver for totalt penetrert mengde HD som funksjon av tid etter eksponering, med alle 8 parallellene for hhv drakt nr 3 og 4](image)

I Tabell 5.2 er resultatene presentert for alle draktene, som totalt penetrert mengde HD etter henholdsvis 2, 6, 12 og 24 timer. Resultatene er gitt som gjennomsnitt av 8 paralleller bortsett fra drakt nr 2 som er analysert med 12 paralleller. Variasjonen mellom parallellene for hver drakt er uttrykt ved standardavvik (STD) etter 24 timer.
Tabell 5.2 Resultater fra penetrasjonsanalyser av SM3 drakter, som totalt mengde penetrert HD henholdsvis 2, 6, 12 og 24 timer etter eksponering

Av draktene som har vært lagret på land har drakt nr 1 og 3 signifikant bedre resultat enn drakt nr 2 (undersøkt med 95% konfidensintervall). De fire draktene som var lagret på fartøy har temmelig like resultater, selv om tilstanden til forpakningene var av svært forskjellig karakter. Dette betyr at det ikke var noen korrelasjon mellom graden av skade på forpakningene og verneevnen.

Selv om det er forholdsvis stor forskjell i resultatene på draktene fra land/fartøy de første timene, så er det ingen dramatikk i disse tallene. Etter 6 timer har alle draktene sluppet gjennom mindre HD enn halvparten av kravet til maksimal penetrert mengde på 4 µg/cm², og etter 24 timer ligger fremdeles alle draktene i god avstand til kravet. Dette er de viktigste resultatene fra analysen, og de forteller at alle draktene fremdeles er fullt brukbare med hensyn til Forsvarets krav til verneevne.

På de to draktene som hadde små revner i forpakningen, ble det tatt ut prøver i nærheten av revnene for å undersøke om disse stedene viste noen redusert verneevne i forhold til resten av drakten. Figur 5.3 viser sammenligningen av resultatene som totalt penetrert mengde HD etter 2, 6 og 24 timer.

Tabell 5.3 Sammenligning av verneevne ved åpne revner med verneevne andre steder på drakten.

Resultatene viser at det er ingen tegn til at draktene har blitt forringet ved de områdene som har ligget med kontakt mot luft. Heller ikke penetrasjonsforløpet for prøvene fra disse områdene har noe annerledes enn de andre. Hvordan draktene har ligget forøvrig vil selvfølgelig ha stor innvirkning her. Har de ligget stabbelt tett sammen er det ikke sikkert disse områdene har hatt noe særlig kontakt med luft eller mulige forurensninger.
I Kapittel 5.1 ble det diskutert at det var forskjeller i produksjonskvaliteten på yttermaterialene mellom drakt 1-3 og drakt 4-7. For å undersøke om dette har noen effekt på verneevnen ble det utført nye penetrasjonsforsøk på drakt nr 1 og 5, hvor yttermaterialene ble byttet om på draktene. Tabell 5.4 viser resultatene fra dette forsøket som gjennomsnitt av 6 paralleller for hvert forsøk.

<table>
<thead>
<tr>
<th>Innermateriale:</th>
<th>Yttermateriale:</th>
<th>Drakt nr 1</th>
<th>Drakt nr 1</th>
<th>Drakt nr 5</th>
<th>Drakt nr 5</th>
<th>Drakt nr 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Drakt nr 1</td>
<td>Drakt nr 5</td>
<td>Drakt nr 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt penetrert mengde etter 24 timer (µg/cm²)</td>
<td>2,038</td>
<td>2,099</td>
<td>3,088</td>
<td>2,909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardavvik</td>
<td>0,721</td>
<td>0,933</td>
<td>0,758</td>
<td>0,355</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 5.4 Forsøk med forskjellige kombinasjoner av ytter- og innermaterialet på drakt nr 1 og 5. Alle resultater er basert på 6 paralleller.

Som resultatene viser, så er det ingen signifikant forskjell i verneevnen avhengig av hvilket yttermateriale som brukes. Dette betyr at forskjellene i verneevnen mellom de forskjellige draktene skyldes forskjeller i kvaliteten hos innermaterialet, enten som resultat av varierende kvalitet fra produksjonen eller reduksjon av verneevnen under lagring.

Et annet interessant resultat fra det siste forsøket er at penetrert mengde for drakt nr 1 her er høyere enn for samme drakt i Tabell 5.2. En statistisk undersøkelse basert på 95 % konfidensintervall viser at det er signifikant forskjell i resultatene. De siste analysene er utført ca et halvt år etter åpning av forpakningen, mens første analyse ble utført umiddelbart etter åpning. Drakten har i mellomtiden hengt i et laboratorielokale uten noen eksponering for kjemikalier. Dette kan tyde på en fremskynding av degraderingen av aktivt kull etter åpning og eksponering for luft over en viss tid.

6 KONKLUSJON

Formålet med forsøkene beskrevet i denne rapporten var å undersøke verneevnen for Sjøforsvarets vernedrakter som effekt av lagringsforhold og varierende kvalitet på forpakning. Undersøkelsene ble utført etter en henvendelse fra Sjøforsvaret der de ønsket å få svar på om drakter som har vært lagret på fartøyer, og der forpakningen har blitt skadet, fremdeles kan brukes eller om disse må erstattes.

Syv vernedrakter er blitt undersøkt hvorav tre har vært lagret på land med hel forpakning, mens fire har vært lagret på fartøy, og med varierende kvalitet på forpakningene. Verneevnen til draktene er blitt undersøkt ved penetrasjonsanalyser med sennepsgass som kontaminant. Etter 6 timer var total mengde penetrert HD for de fire draktene lagret på land 0,5-0,8 µg/cm² og for draktene lagret på fartøy 1,7-2,0 µg/cm². Sjøforsvarets krav er satt til maksimalt 4 µg/cm² 6 timer etter eksponering. Etter 24 timer var total mengde penetrert HD for de fire draktene lagret på land 1,0 - 1,8 µg/cm² og for draktene lagret på fartøy 2,3 - 2,7 µg/cm².

Alle draktene som var lagret på land er produsert i desember 1990, mens draktene som var lagret på fartøy er produsert i september og oktober 1993. Det kan derfor ikke utelukkes at
forskjellene i verneevnen skyldes kvalitetsforskjeller i materialet fra produksjonen. Det er likevel mer sannsynlig at verneevnen for draktene som var lagret på fartøy er blitt nedsatt som resultat av lagringsforhold. Dette kan være resultat av eksponering for kjemikaliedamper eller rett og slett fremskyndet degradering av aktivt kull ved eksponering for luft. Svekkelsen av verneevnen er alikevel ikke dramatisk, og draktene har fremdeles fullgod beskyttelse mot kjemiske stridsmidler også etter 24 timer.

Et viktig resultat fra denne undersøkelsen er at alle syv draktene tilfredsstiller kravet til verneevne med god margin, ikke bare etter 6 timer men også etter 24 timer. Dette viser at draktenes verneevne er fullgod etter 7-10 års lagring.

Med bakgrunn i resultatene fra denne rapporten er det ikke nødvendig å erstatte vernedrakter som har vært lagret på fartøy selv om det har oppstått skader på forpakningene. Dette fordrer at draktene har vært lagret på steder i fartøyene hvor de ikke er blitt utsatt for damper eller væskeforurensing fra olje eller andre kjemikalier. Det oppfordres uansett til forsiktighet ved håndtering av vernedraktene fordi lagring i intakte originalforpakninger vil være med å forlengje levetiden til draktene. Hvis det allikevel oppstår revner i forpakningene, anbefales det å reparere disse med bred tape.
Litteratur

FORDELINGSLISTE

FFIBM
Dato: 23 juni 2001

<table>
<thead>
<tr>
<th>RAPPORTTYPE (KRYSS AV)</th>
<th>RAPPORT NR.</th>
<th>REFERANSE</th>
<th>RAPPORTENS DATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2001/02284</td>
<td>FFIBM/757/138</td>
<td>23 juni 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAPPORTENS BESKYTTELSESGRAD</th>
<th>ANTALL EKS</th>
<th>UTSTEDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UGRADERT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAPPORTENS TITTEL</th>
<th>FORFATTER(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJØFORSVARETS VERNEDRAKTER - UNDERSØKELSE AV VERNEEVNE OG EFFEKT AV LAGRINGSFORHOLD</td>
<td>RØEN Bent Tore, ENDREGARD Monica</td>
</tr>
</tbody>
</table>

FORDELING GODKJENT AV FORSKNINGSSJEF:

<table>
<thead>
<tr>
<th>FORDELING GODKJENT AV AVDELINGSSJEF:</th>
</tr>
</thead>
</table>

EKSTERN FORDELING

<table>
<thead>
<tr>
<th>ANTALL</th>
<th>EKS NR</th>
<th>TIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HFK</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>v/Kapt Bård O Nilsen</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>SFK</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/Geir Sætre</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FABCs</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/Maj Per Ballangrud</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/Kapt Åge Rolland</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>KNM T/HAS</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/OK Arne Søyland</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/KL Geir Johnsen</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FO/Plan 3B</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/Maj Arne Helling</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>LFK</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/Maj Even Mølmsaug</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/Kapt Vebjørn Hansen</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FO/LST/BFI</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>v/Kapt Svenn Øien</td>
<td>1</td>
</tr>
</tbody>
</table>

INTERN FORDELING

<table>
<thead>
<tr>
<th>ANTALL</th>
<th>EKS NR</th>
<th>TIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FFI-Bibl</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Adm direktør/stabssjef</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FFIE</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FFISYS</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Bjørn Arne Johnsen, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Odd Busmundrud, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Monica Endregard, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Hans Christian Gran, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Bjørn Pedersen, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Bent Tore Røen, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Fatima Hussain, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Aase Mari Opstad, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>John A Tórnes, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Leif Haldor Bjerkeseth, FFIBM</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Alexander F Christiansen, FFIBM</td>
<td>1</td>
</tr>
</tbody>
</table>

www.ffib.no

FFI-K1