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2 HYPERBOLIC CONSERVATION LAWS AND NUMERICAL METHODS

In order to understand the CLAWPACK code the user must have some knowledge of
hyperbolic conservation laws and numerical methods. The greater part of the time spent on
this thesis was used to obtain this knowledge. This chapter is presented for completeness of
the thesis and is based on [20] and [23].

2.1 Hyperbolic Conservation Laws

Hyperbolic conservation laws are mathematical statements of physical conservation
properties. They are widely used in modeling fluid dynamical phenomena. Conservation
laws are partial differential equations with an especially simple form. A one-dimensional
system of m conservation laws may be written as

¢+ f(@)z =0, 2.1)

where ¢ = g(z,t) € R™ is the conserved quantity, and f is the flux function. Subscripts
denote partial differentiation.

To see how conservation laws arise from physical principles, first comes a derivation of the
equation for conservation of mass in a one-dimensional gas dynamics problem. The
problem concerns flow in a tube where properties of the gas such as density and velocity are
assumed to be constant across each cross section of the tube. Let x represent the distance
along the tube and let p(z, t) be the density of the gas at point = and time ¢. This density is
defined in such a way that the total amount of gas in any given section between the fixed
boundaries x; and z, is given by the integral of the density:

&
mass in [z, ;] at time { = / ’ plz,t) dz. (2.2)

T

If we assume that the walls of the tube are impermeable and that mass is neither created nor
destroyed, then the mass in this one section can change only because of gas flowing across
the boundaries x:; and z;. Now let u(z, t) be the velocity of the gas at time ¢. Then the rate
of flow, or flux of gas past this boundary is given by

mass flux at (z,t) = p(z, t)u(z,1). (2.3)

The rate of change of mass in [z, 23] is given by the difference in fluxes at z, and z:

d

L
a/ ’ plz, t) dz = p(zy, ulzy, t) — plz, t)u(zs, t). (2.4)
T
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A main feature of the conservation laws is their ability to develop discontinuous solutions.
An example is shock produced in front of aircrafts moving at supersonic speed. Even when
the initial conditions are smooth, the solution will in general develop discontinuities in
finite time.

The discontinuities represent a challenge due to non-uniqueness in the solution and
discontinuities in its derivatives. A mathematical maneuver performed to ease the
smoothness constraints of the solution is the weak solution.

A natural way to define a generalized solution of the in-viscid equation that does not require
differentiability is to go back to the integral form of the conservation law, and say that
q(z,t) is a generalized solution if (2.5) is satisfied for all z1, z5, 1, 5.

There is another approach that results in a different integral formulation that is often more
convenient to work with. This is a mathematical technique that can be applied more
generally to rewrite a differential equation in a form were less smoothness is required to
define a “solution”. The basic idea is to take the PDE, multiply it by a smooth fest function,
integrate it one or more times over some domain, and then use integration by parts to move
derivatives off the function ¢ and onto the smooth test function. The result is an equation
involving fewer derivatives on ¢, and hence requiring less smoothness. In our case we will
use test functions ¢ € Cj(R x R). Cj is the space of functions that are continuously
differentiable with compact support. If we multiply ¢; + f, = 0 by ¢(z,t) and then
integrate over space and time, we obtain

[7 [ lda+ o5(@uldodt =0, @1

Now integrate by parts, yielding

oo +o00 +00
[ [T+ bt @ldwit == [ ¢(a,0)a(z,0) da .12

—00

Note that nearly all the boundary terms which normally arise through integration by parts
drop out due to the requirement that ¢ has compact support, and hence vanishes at infinity.
The remaining boundary term brings in the initial condition of the PDE, which must still
play a role in the weak formulation. The function g(z, ¢) is called a weak solution of the
conservation law if (2.12) holds for all functions ¢ € Cj(R x R) [23].

Due to the conservation properties, there has to be a connection between the velocity of the
discontinuity s, the left state g, and the right state ¢, at the discontinuity. From the
definition of a weak solution, we obtain

sla — ar) = fla) — flgr)- (2.13)

This relation is named the Rankine-Hugoniot (RH) condition.
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2.2 Numerical methods

The presence of discontinuities complicates numerical solution of conservation laws. First
order accurate schemes produce an excessive amount of dissipation near shocks and
discontinuities. The result is that these features are smeared out over several grid cells
causing loss in resolution. The truncation error is dominated by second order terms, and
acts as an artificial viscosity.

Second order accurate schemes have truncation errors dominated by third order terms. This
results in spurious oscillations near the discontinuities giving the schemes a dispersive
character. For non-linear problems, this may result in severe oscillations causing a
breakdown in the computations.

There are two main approaches used to overcome these problems. These are shock fitting
(or shock tracking) and shock capturing.

In the first, used on steady state problems, the discontinuities are handled separately from
the rest of the solution. The discontinuities are treated as internal boundaries using the
Rankine-Hugoniot relations (2.13) as boundary conditions, while the rest of the solution is
treated with standard finite difference methods. The special treatment of the discontinuities
produces accurate representations of the shocks, but the position of the shock waves and
how they interact, must to some extent be known in advance. On time dependent problems
one needs to keep track of the movement of the discontinuities, and this complicates the
schemes. Further, there is difficulty involved in accuracy and convergence assessment.

In shock capturing, the same algorithm is used on the entire solution, which simplifies the
scheme. The schemes uses second order accurate solution methods as a basis for solving
the hyperbolic conservation laws. The schemes are however constructed to reduce the
spurious oscillations associated with second order accurate methods near oscillations. The
discontinuities are smeared out over a small number of grid cells.

The first important paper on shock capturing was published in 1950 by von Neumann and
Richtmeyer [34]. They studied gas dynamics using second order accurate schemes. In real
fluids, the discontinuities are not infinitely sharp, but extend over a thin layer due to
viscosity and diffusive properties. In order to reduce non-physical oscillations in their
solutions they added small amounts of artificial viscosity. The goal was to keep the
representation of the shock sharp, while minimizing oscillations. Later Lapidus [21]
formulated this approach in a two step procedure. The solution were computed in a first step
using a second order accurate scheme, and in a second step he solved a diffusion problem.

The disadvantage of the above mentioned shock capturing approaches is their problem
dependency. The amount of artificial viscosity needed is highly problem dependent,
meaning the methods must be tuned to each individual problem.

In 1960, Lax and Wendroff [22] introduced the conservation form of a finite difference
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the method may be formulated as a conservative scheme, and the time step constraint may
be relaxed to the more liberal sAt < Az. This scheme is first order accurate. In addition,
the complexity in computing the Riemann solution caused this scheme to be only slowly
adapted. Instead approaches like the artificial viscosity were used for many years.

Based on Glimm’s famous theorem on existence of weak solutions for systems of
conservation laws [13], Chorin [4] constructed another Riemann solution based
computational scheme. Instead of using the average of the Riemann solution as the
numerical approximation at the next time level, the value at a random point inside the cell is
used. Due to this, the scheme is named the Random Choice Method, RCM. The result is a
scheme with excellent approximation of discontinuities, which makes this schemes
especially attractive on combustion problems were this is of major importance.

Two decades after the initial work by Godunov, van Leer resurrected his upwind approach,
and developed a second order extension [33]. He considered the Euler equations and
achieved second order accuracy by constructing linear approximations to the solution
within each cell, in contrast to the constant approximation used by Godunov. The slopes in
this piecewise linear approximation are chosen so that no new extrema are introduced and
so that conservation is ensured. This piecewise linear approximation gives rise to more
complicated initial value problems at the interfaces than the Riemann problem. However, it
is possible to approximate this problem by solving a Riemann problem with modified left
and right states. This algorithm was named the MUSCL scheme, an acronym for
Monotonic Upstream-centered Scheme for Conservation Laws. In this original work by van
Leer, the scheme consisted of a Lagrangian step, in which the Riemann problem was
solved, followed by an Eulerian step.

Colella reformulated this scheme into a single Eulerian step, in addition to simplifying the
approximation of the Riemann solution [6]. Other approaches in the same direction are
based on using polynomials of higher degree than one in the reconstruction. In the
Piecewise Parabolic Method (PPM), Colella and Woodward [8] apply quadratic
approximations within each cell resulting in third order spatial accuracy. Even higher order
polynomials are used in the Essentially Non-Oscillatory (ENO) schemes by Harten and
Osher [19].

Harten introduced the concept of Total Variation Diminishing (TVD) schemes [18]. The
total variation of a scalar numerical solution ¢;' is defined as

TV(¢") = 3 lais — &l (2.19)

Note that this definition may be viewed as a measure on the “oscillations™ of the solution.
Total variation diminishing means that TV (¢g"*') < TV (¢™). The TVD concept implies
that ¢g"*! cannot amplify extrema in g™ nor create new ones. If it did, the total variation
would increase. In the paper Harten derived simple conditions for a scheme to be TVD. An
implication of the concept of total variation is connected to the question of convergence.
The set of functions with uniformly bounded total variation is compact, hence any infinite
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property of the Roe solver is that A(¢. — q;) = f(g.) — f(q), which is necessary for
obtaining a conservative scheme. A consequence of this property is that if the exact solution
consists of a single shock, or is dominated by a shock, this will also be the case for the
approximative solution. The Riemann problem of a linear system with m components
consists of m discontinuities. In cases were the exact solution involves rarefaction waves,
this may lead to entropy violating solutions. Hence, an entropy condition is needed. A
theorem due to Harten and Lax states that if the conservation law has an entropy function,
then it is in principle possible to construct a Roe solver [16].

Up to this point it has been focused on one dimensional applications. However, the majority
of problems of practical interest are multi dimensional. There is a considerable activity
going on in diciplines related to this topic, for example grid generation. The underlying grid
may be used in characterizing multi dimensional methods. In what follows I will only
consider Cartesian grids and rectangular computational grid cells.

A commonly used approach on such grids is to apply dimensional splitting. The numerical
approximation is defined by performing sweeps along one dimensional strips of cells. In the
simplest dimensional splitting scheme, the numerical solution at the next time level, i.e.
g™t is defined as follows for the two dimensional problem g; + f(g). + g(¢), = 0. Based
on ¢" the one dimensional problem ¢, + f(g), = 0 is solved for a time step At for every
row in the grid. The intermediate values obtained are used as initial condition when

¢ + 9(q), = 0 is solved for another time step At for every column, and ¢"*! is defined as
the solution obtained. This splitting scheme is formally first order accurate in A?. The
slightly more complicated Strange splitting is second order accurate. Strange splitting
involves solving the first one dimensional conservation law equation over a half time-step,
then solving the second one dimensional equation over one whole time step, and finally
solving the first equation over the last half step. Crandall and Majda [10] have for the scalar
case proved convergence to the unique entropy solution for both splitting schemes when the
one dimensional problems are solved exactly. In a result by Teng [32], it is proved that the
convergence rate for both schemes are O(v/At).

Any one dimensional shock capturing scheme may be used in the splitting resulting in an
easy extension to multi dimensional extension to multi dimensional problems. Remarkably
good results may be obtained using this approach. Another advantage is that the stability
equals the stability of the one dimensional schemes.

There are however several disadvantages with dimensional splitting. The schemes are
strongly directional dependent, since “numerical” waves only propagate in the coordinate
directions. The effect is that discontinuities propagating obliquely to the grid experience
more smearing than the ones traveling close to the coordinate directions. In the same way,
dimensional splitting schemes have trouble with keeping symmetries. Further, we have that
dimensional splitting in connection with very accurate one dimensional schemes may
produce unphysical waves in the vicinity of discontinuities. A well known example is the
failure of the Random Choice Method when applied to multi dimensional gas dynamics [5].

As for one dimensional problems, upwind schemes constitutes an important class of
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3 CLAWPACK

3.1 Governing Equations
The CLAWPACK (Conservation LAWs PACKage) is a program package for solving

time-dependent hyperbolic systems in one, two and three space dimensions. Recall that in
one dimension the standard non-linear conservation law is given as

g+ F(@)e = 0. 3.1)

In this thesis, the conservation laws used will be the Euler equations which in one
dimension are

p pu
pu | +| pul+p = 0. (3.2)
E |, u(E + p)

T

The Euler equations describe the flow of an in-viscid gas with no heat conduction. They
may be deduced by the Navier-Stokes equations by setting viscosity and heat conductivity
equal to zero.

The one dimensional Euler equations contains four unknowns in a system of three
equations, so an additional relation is needed. This is done by introducing the energy
equation

1 P :
E=-pu®+ (3.3)
2”4 T =)

This energy equation describes total energy as a sum of kinetic and internal energy. The
internal energy is deduced from the equation of state for a polytropic gas with v being the
same gas constant as in (2.15).

Equation (3.2) and (3.3) may be put in the form (3.1) where

q1
G2 (3.4)
q3

il

p(z,t)
q(z,t) = | plz,t)u(z,t)

E(z,t)
and
ou qz
f(Qz=| p*+p |=| @/a+pl@) |- (3.9

u(E + p) @(g + p(a)/m
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linearization in this case. Since (3.7 i) guarantees that the method behaves reasonably on an
isolated discontinuity, it is only when a Riemann problem has a solution with more than one
strong shock or contact discontinuity that the approximative Riemann solution will differ
significantly from the true Riemann solution. In practice this happens infrequently, for
example when two shocks collide.

One way to guarantee that both conditions (3.7 ii) and (3.7 iii) are satisfied is to take

Alq, ) = f'(dave) (3.8)

for some average value of g, €.9., qae = 5(q + ¢-). Unfortunately, this simple choice of
Gave Will not give an A that satisfies (3.7 i) in general.

One disadvantage of Roe’s linearization is that the resulting approximate solution consists
only of discontinuities, with no rarefaction waves. This can lead to a violation of the
entropy condition, particularly if the solution involves transsonic rarefaction. In the case of
a sonic rarefaction wave, it is necessary to modify the approximate Riemann solver in order
to obtain entropy satisfying solutions. There are various ways to do this and a standard
method is implemented in CLAWPACK.

3.3 Godunov Methods

Recall that each cell has a constant value interpreted as a cell average. This value must be
updated for each time step. The change of value equals the sum of net flux at both cell
interfaces. This flux is calculated using the wave speed A?, from the Riemann problem
together with the size of the discontinuity across the interfaces. The flux is regarded as
constant over each time step.

The first order Godunov method is implemented in a form that requires a flux-difference
splitting which is a decomposition of f(g,) — f(q) into a left-going flux-difference denoted
by A~ Agq. and a right-going flux-difference denoted A*Ag, with the property that

A" Ag+ ATAq = f(g:) — fla) - ‘ (3.9)
For the classical Godunov method, let ¢+ = Q(0) be the value along z/t = 0 in the solution

to the Riemann problem. Then

A”Aq = f(q") — fla) (3.10)
A*Aq = flg:) = F(g)-

If a wave decomposition on the form (2.17) is available, one can alternatively set
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where ¢/ is the intermediate state arising in solving the Riemann problem at z;. This
numerical method is clearly in conservation form and is typically stable for Courant
numbers up to 1. Equation (3.15) can be rewritten by the use of equation (3.10) as

At
q; =4qi — E(J‘HA% + A" Agipa). (3.16)

Here A" Ag; is the right-going flux difference from solving the Riemann problem between
gi—1 and ¢;. This models the combined effect on the cell average g; of all waves entering the
cell from the left edge. Similarly, A~Ag, 4 is the left going flux difference from the
Riemann problem between g; and ¢;1, and models the combined effect of all waves
entering the cell from the right. For a system of conservation laws, (3.16) is conservative
and consistent for any flux-difference splitting that satisfies (3.9). Nonconservative systems
does not yield equation (3.15), but by using piecewice constant initial data, and then
computing cell averages to define §;, Riemann problems can be effectively implemented in
the form (3.16).

Godunov methods as described here are only first order accurate.

3.4 High Resolution Methods

First order methods will smear out the solution. This is especially true for rapid shifts in
gradients and discontinuities. The result is large numerical diffusion. Second order methods
will smear out less, but have a tendency to oscillate in the vincinity of rapid shifts in
gradients and discontinuities leading to numerical dispersion. A high resolution method
must be able to handle discontinuities satisfactory without excessive numerical diffusion or
dispersion. This is accomplished by introducing a correction term to the first order
Godunov method making it second order accurate, combined with a limiter to the correction
term in order to minimize oscillations in the solution.

3.4.1 Second Order Corrections

In the first order Godunov method, the initial solution was approximated by piecewise
constant initial data. In order to introduce a second order correction term, this
approximation is refined to a piecewise linear approximation with the same cell average as
before. Alternatively, the correction terms may be viewed as correction waves
accompanying the first order waves described earlier.

Equation (3.16) is a first order advancement of the solution to the next time step. The
method can be extended to

At A
g =& — —(ATAg + A" Agiy1) —

t - 3
= (Bt —F), (3.17)

Az



24

upwind direction; i.e., we look to the left if A? > 0 and to the right if A} < 0. In the case of
the linear system (3.12) we have

WP = o1, (3.22)

where o is a scalar and the vector 7 is independent of i. Then we can simply apply the
limiter to the scalars o, setting WP = of'r?, where &! is the limited wave strength. This is
calculated by applying some limiter function ¢ to the ratio of this wave strength to the
strength of the neighboring wave in the same family, looking in the upwind direction,

a; = o(0F)af, (3.23)
where
P ; TV
p_ O . _Ji=1 i A >0
b= Wlth]_{z‘+1 if A <0 (3.24)

The ratio of wave strengths 67 is used to measure the smoothness of the solution. Where the
solution is smooth, this can be expected to be near unity. Near discontinuities in the pth
family, #” may be far from unity. A wide variety of limiter functions have been studied,
some standard limiters used in CLAWPACK are

minmod: $(0) = maz(0, min(1,6))

superbee: #(0) = maz(0, min(1, 28), min(2, 6))

monotonized centered (MC):  ¢(0) = maz(0, min(gizﬂl, 2,26)).

For variable coefficient or nonlinear problems the wave WY will not be a scalar multiple of
the waves WY, or WF, | from the neigboring Riemann problem, and one must determine
the manner in which these vectors are going to be compared and modified in applying the
limiter. For concreteness assume A > 0 so that the pth family we compare WY and WY_,.
The approach used is to project the neighboring wave WY, onto the vector W} and
compare the length of this projected vector with the length of WY itself, modifying the
length of WP as needed, but preserving its direction. This is accomplished by setting

Wf—x ; Wl?
WP WP
WP = ¢(0P)W?,

o — (3.25)

where - represents inner product. Note that this reduces to (3.24) for a linear system.
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Bt A*Ag;; (the up going transverse fluctuation) and B~ A*Ag;; (the down going transverse
fluctuation).

Introducing transverse propagation has two important effects. First, it provides the cross
derivatives terms ¢, and ¢y, required in a second order algorithm. Once the transverse flux
has been included, second order accuracy is easily achieved by including the second
derivative terms in each coordinate direction (¢, and g,,) using the same correction that is
applied in one space dimension. Second, the transverse correction terms improve the
stability limit and allow full Courant number 1, relative to the maximum wave speed in any
direction. For more details see [25]

4 MODIFICATIONS TO THE CLAWPACK CODE

CLAWPACK is a package of Fortran subroutines for solving time-dependent hyperbolic
systems in one, two and three space dimensions. It provides a framework for user supplied
or adapted subroutines used to define the problem of interest. The package supports the use
of a designated subroutine for implementation of boundary conditions and likewise a
subroutine for implementation of source terms using time steps of length dt or dt/2
(Strange splitting).

Modifications can thus be regarded as a customization of the user supplied subroutines.

4.1 Boundary Conditions

Outer boundaries limiting the computational domain may be implemented as either
reflecting solid wall boundaries or open boundaries (4.1).

Boundary conditions are implemented by assigning values to two rows of ghost cells added
to the outskirts of the computational domain. The values of the ghost cells are related to the
values of computational cells directly inside the domain. The implementation of boundary
conditions described below are not strictly conservative.

Non-reflecting boundary conditions are also known as open boundary conditions or
artificial boundaries. They are used when the problem of interest is not limited by walls.
Open boundaries should thus replicate infinity by letting the solution exiting the domain do
so, without reflecting disturbances back into the solution. Artificial boundaries will,
ofcourse, never be able to model infinity in the case of incoming flow.

In the simulations, open boundaries are implemented by assigning values to the two rows of
ghost cells based on the outermost computational cells as shown in figure (4.2). The Ghost
cells are given values according to

P|Ghost cell 1.row = pIGhost cell 2.row = p'C‘amp, cell 1.row 4.1)
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P’u|0host cell 1.row — Pulchost eell 2.row = pu|0mnp. cell 1.row
p'U'Gha.ut cell Lrow — P'UIGhost cell 2.row — p'UlGomp‘ cell 1.row

E‘Ghast cell Lrow — EIGhost cell 2.row — E'Comp. cell 1.row-

Reflecting boundary conditions are also known as solid wall or no-cross flow boundary
conditions. They are used when the problem of interest are restricted by solid walls. The
exiting solution should be reflected back into the computational domain. This is done by
assigning values according to (4.2) and figure (4.3).

Ghost cells Computational cells

2. row l.row 1. row 2. row

[ N

Figure 4.3: Reflecting boundary conditions.

Plhiost cett 150w = Ploomp.cett 170w (4.2)
pl_Ghost cell2.row = PIComp.cell 2.row
PTL'Ghost cell l.row — —pu'lC'o'mp. cell 1.row
p'UJlGhast cell 2.row — —P’U|Comp. cell 2.row
P'UIGhast cell 1.row — P’U[cmp. cell 1.row
.D'UIGh.ost cell 2.row — PV ICamp. cell 2.row
ElGhost cell L.row = E'Cmﬂp. cell l.row

E|G’host cell 2.row = ElCmp. cell 1.row-
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computational
cell

boundary cell

ghost cell

Figure 4.5: Boundary conditions of circular objects.

Figure 4.6: Circle modeled by the described boundary conditions. The ghost cells and the
boundary is showing outside the white filling.
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general form of the conservation law with source term becomes

g + f(@)z + 9(q)y = ¥(q), (4.5)

with 7/ being the source term.

The two dimensional Euler equations including gravity will thus be

p P pv 0
4 0
ol I e O B B - (4.6)
pv puv p? +p —pg
E |, u(E+p) |, v(E + p) » —pgu

where E = 3p(u” + v*) + -5p and gravity appears in the source terms. g = 1/7.
Implementing these source terms in the CLAWPACK code can be done in various manners.
4.2.2 Time Splitting

In this work, the source terms are implemented using time splitting. Using time splitting,

(4.5) is decomposed into the homogeneous conservation law (3.1), and an ordinary
differential equation (ODE)

a = ¥(q). (4.7)

In the current case, the Euler equations with gravity, the homogeneous part is equation (4.6)
with the right hand side being all zeros, while the system of ODESs is

P 0

o T LS (4.8)
pv —Pg .

E |, —pgu

The calculations can thus be performed as earlier with an additional system of ODEs solved
over the same time step in a separate operation.

In this work the implementation of source terms are done as follows.

At the start of each time step, boundary conditions are set using the standard boundary
condition subroutine. Secondly, the Riemann solver solves the homogeneous equations as
in the absence of source terms. This calculation spans the whole time step. Then, the
subroutine solving the ODEs are called, solving the ODEs over the same time step
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p,Ghost cell 2.row = PIComp. cell 2.row
Pu|Ghost cell 1.row — pu|(3'omp. cell 1.row
pul(}'host cell 2.row — pu|Comp. cell 2.row

pU!Ghost cell Lrow — *.UU'Comp. cell 1.row

P?}lGhast cell 2.row — -pU]CUmp. cell 2.row
E]Ghosf. cell L.row = (E\Comp. cell 1.row X 7Y + P|Camp. cell Lrow X grav x d‘lj)/')/
E‘Ghost cell 2.row = (E|Comp. cell .row X Y+ P|Cmnp. cell 1L.row X Grav X 3 X dy)/”f-

The assumption of constant density near the reflecting boundary is suspect. In problems
involving flow at the boundaries, the pressure (energy) part of the solution must be handled
with more care. For the simulations performed in this thesis, the boundary conditions in
(4.11) are sufficient since the simulations are terminated before momentums reach the
boundaries.

As for open boundaries with gravity, the vertical boundaries do not need to be modified.

Inflow conditions are implemented in the same fashion as without gravity. The only care
that must be taken is that the flow parameters match the problem investigated with regard to
initial conditions and pressure equilibrium.

The method of time splitting may not be suited for near steady state solutions with small
perturbations. The reason for this is that the source terms are added to the steady state
solution for then to be corrected by the next solution of the Riemann problem. The result of
one large contribution to be cancelled by a correspondingly large correction in the Riemann
solver may be inaccurate. Further, we have that limiters are applied in the solution
procedure of the Riemann problem, while the solution of the ODEs stands uncorrected [28].

5 VALIDATION TESTS

5.1 Scaling

The parameters for time, length, velocity, pressure, gravity and density needs to be
converted from the units used in the simulations to physical units. The basic parameters are
time and length. From these parameters, one can deduce the others. Subscript 0 denote
scaling factors.

As an example, we have that t,..; = teomputation X to-

As we are dealing with a compressible gas, velocity is scaled by the mach number as

U(] — *C, (S])

=N
ﬁ
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left boundary. Initial conditions were set with uniform velocity except for a vertical
disturbance introduced at the leeward side of the object. The vertical velocity component
were the same size as the initial horisontal velocity. The simulation was terminated at
simulation time 1800.

Results The simulation shows unsymmetric vortex shedding. The vortices are shed from
the downwind corners of the rectangle as expected. The wake do not evolve into a stable
von Karmann vortex street. The distribution of vortices behind the object seems random.
The measurements at a point located 100 cells left of the right boundary (5.1) shows
oscillation in vertical velocity.
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Figure 5.1: Vertical velocities as a function of time behind rectangle.

Discusion The rectangle have sharp corners defining the separation point of the flow.

Thus, alternate vortex shedding from a rectangle do not involve relocation of the separation
point. The phenomenon is not dependent of a accurate modelling of the boundary layer. The
compressible Euler equations handles compressibility and is not limited to irrotational flow.

5.2.2 Circle

The simulation is performed on a 600 x 300 grid with open boundaries. The object is
modelled as a circle with radius spanning 20 grid cells. Inflow is defined on the left
boundary. Initial conditions were set with uniform velocity except for a vertical velocity
component, of the same size as the horisontal velocity component, introduced at the
windward side of the circle. The simulation was terminated at simulation time 600.

Results A vortex street is not seen, but there are varying vertical velocities behind the
circle, figure (5.2).
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equations are in-viscid, and therefore not capable of reproducing a boundary layer. The
failure to produce a Von Karmann vortex street is thus consistent with in-viscid flow theory.

The results do however show a varying vertical velocity behind the cicle indicating the
presence of such a vortex street. This needs to be investigated further. This simulation ran
for approximately a week.

5.3 Two phase

Godunov methods are well suited to capture discontinuities. In order to investigate
CLAWPACKSs ability to handle density discontinuities, I use a test case modeling gases of
two different densities with zero momentum in initial conditions. The setup is run to see
wether CLAWPACK is able to “hold” the solution, or if velocities are created. Any
velocities will be non physical. The density relation between the upper and lower gas is one
to five, and there are 100 grid cells in vertical direction.

Results The simulation produces vertical velocities at the discontinuity. These are in the
range of 1071%,

Figure 5.3: Velocities at t = 0.5 in two phase setup without gravity. py = 1, p; = 5 and
p = 1 in top. The computational domain is resolved by 100 grid cells vertically.

Discusion Vertical velocities are produced at the interface between the two gases. Since
there is no diffusive term in the governing Euler equations, the velocities are clearly an error
related to the scheme or round-off errors. In the construction of the approximative Roe
solver, condition (3.7 i) ensures that the approximative solution is exact across the
discontinuity. One can thus conclude that the errors are solely round-off errors.
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Figure 5.4: Velocities at t = 0.5 in setup with constant density, p = 1, p = 1 in top and
gravity. The computational domain is resolved by 100 grid cells vertically.

5.4.2 Two Phase Hydrostatic Equilibrium

A test case is set up with two phases and hydrostatic equilibrium. A low density gas is
defined on top of a heavier gas. Each of the two phases is given a hydrostatic equilibrium,
with continuity of pressure across the interface of the two gases. The momentum is set to
zero everywhere and boundary conditions are given as in the case of hydrostatic
equilibrium.

Results Dominating velocities are introduced at the interface between the high and low
density gases. The velocyties are in the range of 10~ Starting at the interface, the area of
momentum spreads to the rest of the domain.
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Figure 5.5: Velocities at t = 0.05 in two phase setup with gravity. py = 1 and p; =5, p =1
in top. The computational domain is resolved by 100 grid cells vertically.

Discusion The model produces large momentums. Doubling the resolution does not
reduce the errors. The results are clearly non-physical and the error is to large to be
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6.2 Wave Modification

Gravity appears as a source term in the Euler equations. This source term may be
implemented by introducing a new discontinuity with Riemann problems to be solved in the
center of each grid cell. The discontinuity will be in the density and energy equations.
Pressure is indirectly given by the energy equation.

The introduction of an additional discontinuity with the associated Riemann problems in
every grid cell represents a vast increase in computational cost. The increase in
computational cost of each time step becomes even more severe as the effective width of the
grid cells is halved. The stability constraints will then lead to halving of the time steps as
well.

This motivates an alternative implementation of the same principle. Instead of introducing
new discontinuities in the center of each grid cell, the source terms may be implemented be
modifying the left and right states of the existing Riemann problems. This implementation
allows the original spatial grid and time steps to be unchanged. Further we have that no
additional Riemann problems need to be solved.

The implementation of gravity through modification of left and right states in the Riemann
problems ensures that perturbations are calculated by a single set of waves of size relevant
to the size of the perturbation. This is a major improvement of the scheme minimizing
numerical errors when it is used to solve small perturbations near steady state.

By modifying the values of the cell averages, we can incorporate the source terms in the
solution of the Riemann problems. This leads to solving both the homogeneous part as well
as the source term in the same procedure. Numerical errors are thereby minimized by
describing perturbations directly and not by introducing large sources and correspondingly
large corrections. More details can be found in [26], and [28].

The implementation of wave modification used in [28] is based on as assumption of “small”
perturbations. The presented results are based on a truncated solution of the modifications
implied on to states in the Riemann problems. The truncation error may be minimized by
implementing an iteration procedure using the truncated solution as an initial guess.

6.3 Extraction of Perturbations

Another alternative algorithm may be deduced by subtracting the initial condition from the
solution, and thus solve with regard to the remaining perturbations.

In the case of an initial pressure balance, where subscript 0 denote initial state, we get

p=po+p (6.3)
p=po+p
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0v 0 O
0 0 yp v
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h= ; 6.12
o (6.12)
0

The non-conservative formulation is used with time splitting. Only the vertical velocity
component is modified, and either a standard Riemann solver or the formulation

Ar = 5(A() + Aa) (6.13)

may be used.

7 CONCLUSION

The CLAWPACK code was originally designed for solving problems involving shocks
using conservation laws. Due to its ability to handle discontinuities, it would be interesting
to see whether it can be used on problems originating in marine technology, especially
handling of a free surface. Gravity and curved geometries have been implemented.

The implementation of a circle was successful. Simulations of vortex shedding shows
physical behavior. Approaching the problem of a free surface, it is found that the code holds
initial conditions with discontinuous density profile. Implementing gravity, the code shows
satisfying results on holding a hydrostatic equilibrium with constant density. Problems arise
when applying varying density.

The CLAWPACK code used with the Euler equations is not developed as a tool for solving
problems involving a free surface. Further work has to be done in order to implement and
verify capability to handle gravity combined with discontinuities. Suggestions to alternative
algorithms for implementation of gravity are given.
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