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English summary  
This report describes mathematical modelling of the elastic stiffness of nanocomposites, which in 
this context is referred to as particles of nano-size included in a polymer matrix, i.e. particles with 
one dimension of nanometre size. The main motivation for this work was to establish 
mathematical models for calculating the elastic properties of different nanocomposites, which 
then can be included in a “model toolbox” for future applications and for improved understanding 
of this type of materials. In this study, it is assumed that micromechanics models and continuum 
mechanics theory can be applied in modelling.  
 
In this report, the Mori-Tanaka method is considered, where the particles are described as having 
a spheroidal shape. From this assumption, the Eshelby tensor can be applied to calculate the 
influence of the particles to the matrix, and the overall elastic stiffness of the composite due to the 
inclusions. The particle shape and orientation will affect the macroscopic elastic stiffness of the 
composite. Thus, different spheroidal shapes (e.g. spheres, prolate and oblate) are considered, as 
well as both aligned and random particle orientation. The current study is, however, restricted to 
two-phase composites, i.e. composites with one particle inclusion phase.  
 
When searching the literature, different models based on the Mori-Tanaka method are found. 
Expressions are available for specific geometric shapes and particle orientations. A more general 
multi-phase Mori-Tanaka model, which is applicable to several shapes and different orientations, 
is also found. The different models are implemented in Matlab, and the calculated model results 
are compared. Furthermore, the general Mori-Tanaka model is compared with experimental data 
found in the literature for some relevant nanoparticle/epoxy systems. 
 
The model calculations agree very well. Moreover, the model results for the general two-phase 
Mori-Tanaka model agree with most of the experimental results, but the model is not able to 
predict the improved stiffness for low volume fractions very well. Additional studies should 
therefore consider other effects that will influence the elastic stiffness of the nanocomposites. 
First of all, more than one inclusion phase, e.g. voids, agglomerates or other particles, should be 
included as part of the model toolbox. Second, it is relevant to establish models that consider the 
effect the nanoparticle interphase, which may be modelled as a region surrounding the particles 
with different elastic properties compared to the neat matrix.   
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Sammendrag 
Denne rapporten beskriver matematisk modellering av elastisk stivhet for nanokompositter, som i 
denne konteksten refererer til partikler av nanostørrelse som er inkludert i en polymermatrise, det 
vil si partikler der en av dimensjonene er i nanometer. Hovedmotivasjonen for dette arbeidet har 
vært å etablere matematiske modeller som kan benyttes for å beregne de elastiske egenskapene til 
ulike nanokompositter, som deretter kan inkluderes i en “modellverktøykasse” for fremtidige 
applikasjoner og for økt forståelse av denne typen materialer. Det er antatt at mikromekaniske 
modeller og kontinuummekanikk kan benyttes i modelleringen.   
 
Denne rapporten tar for seg Mori-Tanaka-metoden, der partiklene antas å ha en sfæroidal 
(kuleformet) fasong. Basert på denne antakelsen, kan Eshelby-tensoren benyttes for å beregne 
partiklenes påvirkning på matrisen, og de elastiske egenskapene til et kompositt med inklusjoner. 
Partiklenes fasong og orientering vil påvirke den makroskopiske elastiske stivheten til 
komposittet. Ulike fasonger (sfærer, fiberformede, tynne disker og nåleformede) er inkludert i 
studien, og videre ensrettede og tilfeldig orienterte partikler. Studien er begrenset til kompositter 
med én type inklusjoner, det vil si to-fase-kompositter.     
 
Ulike modeller for nanokompositter, basert på Mori-Tanaka-metoder, er gitt i litteraturen. Uttrykk 
er tilgjengelig for partikler med gitte fasonger og orientering. En mer generell multi-fase Mori-
Tanaka-modell, som er anvendbar for ulike fasonger og orienteringer, er også tilgjengelig. De 
ulike modellene er implementert i Matlab, og de beregnede modellverdiene er sammenliknet. 
Videre er den mer generelle Mori-Tanaka-modellen sammenliknet med eksperimentelle data for 
noen relevante nanopartikkel/epoksy-systemer. 
 
Det godt samsvar mellom modellresultatene. Videre er beregningene med bruk av den generelle 
to-fase Mori-Tanaka-modellen i godt samsvar med de fleste eksperimentelle data. Denne 
modellen klarer derimot ikke å beregne stivhetsøkningen for lave volumfraksjoner veldig godt. 
Videre studier bør derfor vurdere andre effekter som vil påvirke stivheten til nanokomposittet. 
For det første bør det tas høyde for flere inklusjonsfaser, være seg hulrom, agglomerater eller 
andre partikler. Dessuten er det også relevant å etablere modeller som inkluderer en interfase, 
som kan modelleres som en region som omslutter partiklene, og som har andre elastiske 
egenskaper enn matrisen. 
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1 Introduction 
This report describes mathematical modelling of the elastic stiffness of nanocomposites, which in 
this context is referred to particles of nano-size included in a polymer matrix, i.e. particles with 
one dimension of nanometre size. The main motivation for this work is to establish a 
mathematical model “toolbox” for nanocomposites that can be used in future applications and for 
improving the understanding of this type of materials.  
  
When establishing models for nanocomposites, several factors need to be considered. First of all, 
the nanomodified polymer in many cases contains very small weight fractions, or volume 
fractions1, of nanoparticles, i.e. in the range of 1-5 wt% or less. Studies indicate that a peak 
weight fraction is reached for small concentrations, and that the composite properties are in fact 
reduced for higher concentrations; see for example [1] for the variation in conductivity. The small 
volume fraction  is different from, for instance, short-fibre composites, where the volume fraction 
is typically around 50 to 60 per cent [2]. One reason for the peak weight fraction may be that the 
nanoparticles introduce a very high interfacial area. Due to the small-sized particles, the 
interfacial area is much larger than what is obtained by adding larger particles [3]. Also note that 
the aspect ratio of the particles, i.e. the particle length divided by the diameter, is an important 
factor for defining the interfacial area. Another key factor is the degree of dispersion and the 
amount of agglomerations. For obtaining a good load transfer between the nanoparticles and the 
surrounding matrix, the particles should ideally be fully dispersed. Agglomerates and interacting 
nanoparticles will work as defects in the material instead of reinforcement. As a consequence of 
this, the interphase effects, i.e. the mechanical properties of the region surrounding the particle, as 
well as the interface effects, i.e. the load transfer at the surface between the particle and the matrix 
on molecular level, are also of high importance. For polymer composites containing small 
particles,  i.e. of nanosize, including the interphase/interface effects are said to be a requirement 
when doing modelling [4;5].  
 
For particles where one dimension is larger than the other two, such as carbon nanotubes (CNTs), 
carbon nanofibres (CNFs) and other fibre-like nanoparticles, the particle length distribution and 
the particle orientation distribution are essential parameters that will influence the load transfer. 
As for short-fibre composites, the fibre-like nanoparticles must have a critical length to be able to 
transfer load. Fibre-like particles having a shorter length than the critical one will not transfer any 
load. The fibre orientation distribution will also affect the overall load transfer of the 
nanocomposite. As an example, polymer composites with aligned fibres (that are perfectly 
distributed and with optimal load transfer) will have higher elastic stiffness in the direction of the 
(stiffer) fibres, compared to the transverse direction. A composite with 3D random orientation of 
the fibres will macroscopically have equal properties in all directions.  The difference in 
composite modulus between perfectly aligned and randomly distributed fibres is estimated to be a 
factor of five [3]. In addition, the fibre/CNT waviness will influence the mechanical 
                                                           
1 The conversion between weight fraction and volume fractions may be expressed as ( / )f f c fW Vρ ρ=  

where fW is the weight fraction of the particles, fV  is the volume fraction of the particles, and fρ  and cρ  

is the density of the particles and the composite, respectively.  
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improvement. A straight fibre/CNT is found to transfer more load than a curved fibre/CNT, see 
e.g. [5] and the references therein.       
 
In the literature, two main approaches are presented for establishing mathematical models for 
nanocomposites [5], as illustrated in Figure 1.1. The first approach, referred to as the “bottom-up” 
approach, starts with quantum and molecular mechanics. From this, models for nanocomposites 
are established by moving to a higher scale. The second approach, referred to as the “top-down” 
approach, starts with models from micromechanics, laminate theory and continuum mechanics. 
Models for nanocomposites are then established by moving to a lower scale. Because the 
interaction between the nanoparticles and the surrounding matrix is on a molecular level, there is 
an on-going discussion on the validity of using the “top-down” approach for describing 
nanocomposites. 
 
In the work presented here and the models referred to, we assume that the “top-down” approach is 
valid for describing nanocomposites. Furthermore, due to a variety of factors that may influence 
the macroscopic properties of the nanocomposite, we need to make some assumptions and 
simplifications to reduce the number of factors. In this work, we only consider the geometry (i.e. 
different ellipsoidal shapes) and orientation of the particles in the matrix (i.e. aligned and random 
orientation). We assume that all fibre-like inclusions are straight, and that there is full load 
transfer between the particles and the matrix (i.e. in the interphase). Moreover, interphase effects 
are neglected, the particles are perfectly dispersed in the matrix, and there are no voids in the 
matrix. As a consequence of this latter assumption, the study is restricted to two-phase 
composites.  
 
Earlier work by the author considered short-fibre models for modelling the elastic stiffness of 
nanocomposites [6;7], where the same assumptions and simplifications where taken, as listed in 
the previous paragraph. In this report, the model toolbox for nanocomposites is extended with 
models based on the well-known Mori-Tanaka method, where the particles are assumed to have a 
spheroidal shape. This method is applicable to inclusions of different geometric shapes and sizes. 
The Mori-Tanaka method builds on the work by Eshelby (see Section 2), using the so-called 
Eshelby tensor. This will be briefly described before moving to the Mori-Tanaka method itself. In 
addition, several works report good agreement between the Mori-Tanaka model predictions and 
experimental results, see [5] and the references therein. In this report, different models, for both 
randomly distributed and aligned particles of ellipsoidal shape are presented and implemented, 
and the model results compared with available and relevant experimental data. Since the same 
assumptions are made for the short-fibre models and the Mori-Tanaka models, comparison of 
model results is also possible. For all cases presented in this report, the included materials for 
each phase of the nanocomposite are assumed to be linearly elastic and isotropic. 
 
One or more of the assumptions and simplifications made in the study presented in this report, 
may give results which are neither physically representative for the composite nor in accordance 
with experimental data. As an extension of the current work, follow-up studies have been 
performed and reported: 1) three-phase models where an additional  phase is included, being 
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voids or agglomerates in the matrix [8], and 2) the effect of the nanoparticle interphase on the 
macroscopic elastic stiffness of the composite [9]. The reader is referred to the FFI reports for 
more details.    
 

 

Figure 1.1 The bottom-up versus the top-down approach for modeling of nanocomposites. 

2 Eshelby tensor 
Eshelby derived expressions for the effect on the strain due to a spheroidal inclusion in a 
continuous medium [10;11]. The tensor taking into account this influence has been denoted the 
Eshelby tensor. In this report, only a brief description is provided, since the main focus is on the 
Mori-Tanaka method. A more detailed description of the Eshelby tensor may also be found in 
[12]. 
 
In the derivation of the Eshelby tensor, it is assumed that we have a homogenous linear elastic 
solid with volume v and surface area S , with an inclusion volume 0v and a surface area 0S , as 

shown in Figure 2.1.2 The volume v outside the inclusion is called the matrix.  
 
Removing the inclusion volume 0v  from the surrounding matrix, the inclusion volume should 

assume a uniform strain. This strain is referred to as the eigenstrain, whereas the corresponding 
stress is referred to as the eigenstress. The eigenstress is related to the eigenstrain through 
Hooke’s law for linear elastic materials. Note that both the matrix and the inclusion have the same 
elastic constants/properties in this case.  
 

                                                           
2 The volume is denoted by lowercase v to avoid confusion with the volume fraction in later sections of this 
report.  
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The Eshelby tensor ijklS expresses the constrained strain inside the inclusion c

ije   to its 

eigenstrains *
kle , 

 
*c

ij ijkl kle S e=  (2.1) 
 
Since this tensor relates two strain tensors, the Eshelby tensor satisfies the minor symmetry 
condition, i.e. 
 

ijkl jikl ijlkS S S= =  (2.2) 
 
The Eshelby tensor, however, does not satisfy the major symmetry condition, i.e. ijkl klijS S≠  (as 

do for example the fourth-order elasticity tensor for linear elastic materials [2]). 
 
For spheroidal inclusions, the volume 0v occupied by the inclusion can generally be expressed as 

 
2 2 2' ' ' 1     + + ≤     

     
x y z
a b c

 (2.3) 

 
where a , b and c specify the size of the spheroid, along the axis 'x , 'y and 'z , respectively. 

Depending on the size, we get different expressions for the Eshelby tensor. Some common shapes 
and corresponding tensors are given next. 
  
The Eshelby tensor for spherical inclusions ( a b c= = ) can be written with a compact 
expression,  
 

  
 

 

Figure 2.1 A linear elastic solid with volume  and surface S. A sub volume with surface 
undergoes a permanent (inelastic) deformation. The material inside is called 

an inclusion, and the material outside is called the matrix.  
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0 0

0 0

5 1 4 5 ( )
15(1 ) 15(1 )
ν νδ δ δ δ δ δ

ν ν
− −

= + +
− −ijkl ij kl ik jl il jkS  (2.4) 

 
where ijδ  is the Kronecker delta, and 0ν is the Poisson’s ratio of the continuous matrix. Written 

out for the (non-zero) coefficients, we get [13;14] 
 

0
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0
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−

 (2.5) 

 
Moreover, for fibre-like spheroidal inclusions the Eshelby tensor can be expressed as follows 
[13], 
 

2 2

1111 0 02 2
0

2

2222 3333 02 2
0 0

2

2233 3322 02 2
0

2

2211 3311 2
0

1 3 1 3
1 2 1 2

2(1 ) 1 1

3 1 9
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1 2
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ν α α

α ν
ν α ν α
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ν α α
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ν α
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 

= = + − + − − − − 
  
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= = −
− −

2

02
0
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2
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2
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4(1 ) 1 2

g

S S g
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S S

α ν
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ν ν
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α ν
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αν ν
ν α

 
+ − − − − 

  = = − − + + − +  − − − −   
  

= = + − −  − − −  

+
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− −

2

2

( 1)
1

g
α
α

  + 
  −     

(2.6) 

 
where 
 

{ }2 1/2 1
2 3/2

( 1) cosh
( 1)

g
α α α α

α
−= − −

−
 (2.7) 

 
and /l dα = is the aspect ratio of the fibre length l and the fibre diameter d . Note that the 
aspect ratio is applied for indicating the size of the inclusion in this case. The aspect ratio is 
explicitly included in several models for fibre-like inclusions in a matrix, see e.g. [6]. 
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For disc-shaped spheroidal inclusions the Eshelby tensor is given by the same expressions as in 
(2.6), but with g replaced by 'g  [13;14], 

 

{ }1 2 1/2
2 3/2

' cos (1 )
(1 )

g
α α α α
α

−= − −
−

 (2.8) 

 
In this case, the aspect ratio /t aα = , where a and t are the major and minor axes of the 
inclusion, with its minor axis directed along 'x . 
 
Alternative expressions for disc-shaped, penny-shaped, spheroidal inclusions, where a b c= ≠ , 
the Eshelby tensor can be expressed as follows [12] 
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a
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0
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c
a  

(2.9) 

 
Furthermore, in case of an elliptic cylinder, i.e. c →∞ , the Eshelby tensor can be expressed as 
follows [12]: 
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(2.10) 

 
Other expressions for the above mentioned shapes, as well as other shapes, may be found in the 
literature.  

3 General derivation of the Mori-Tanaka method for ellipsoidal 
inclusions 

In this section, a general derivation of the Mori-Tanaka method is presented. Since this results in 
fourth-order tensors that need to be truncated, an alternative formulation is derived using a vector-
matrix notation, which reduces the overall dimension of the problem. The application of vector-
matrix notation is possible due to the symmetry properties of the involved quantities.  

3.1 Tensor notation 

The original paper by Mori and Tanaka, describing their method, is from 1973 [15]. However, in 
the derivation of the Mori-Tanaka method presented in this report, we follow the derivation by 
Fisher and Brinson [5]. 
 
In the Mori-Tanaka method, it is assumed that the composite is comprised of N phases. Phase 0 
is the matrix, and the remaining 1N −  phases are inclusion phases. The matrix phase has 
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stiffness 0C and a volume fraction 0V , whereas the r th inclusion phase has a stiffness rC and a 
volume fraction rV . The quantities 0C  and rC are generally fourth-order elasticity tensors, with 

certain symmetry properties. The elasticity tensors satisfy the minor symmetry condition, i.e. 
= =ijkl jikl ijlkC C C , which was also the case for the Eshelby tensor described in Section 2. In 

addition, the elasticity tensor will satisfy the major symmetry condition, i.e. =ijkl klijC C . The 

volume fractions are single values, i.e. constants. 
 

 

Figure 3.1 Schematic of the Mori-Tanaka method. The figure/picture is taken from [5]. Note 
that in this case the inclusion 3’ axis is directed along the load direction. Moreover, 
in the current figure, a left-hand coordinate system is defined. 

 
Figure 3.1 shows a multi-phase composite with inclusions, as well as a comparison material. The 
average stress for the comparison material is given by Hooke’s law, 
 
σ ε= aC0 0  (3.1) 
 
whereas for the composite with inclusions, the average stress is given as 
 
σ ε= aC  (3.2) 
 
Due to the inclusion, the average strain of the matrix of the composite will be perturbed, reading 
 
ε ε ε= +a

pt
0 0  (3.3) 

 
where the over-score represents the volume average of the quantity, and  pt

0ε is the perturbation 

strain.  
 
The average strain of the rth inclusion is perturbed by the amount pt

rε , 
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ε ε ε ε ε ε= + = + +r r a r
pt pt pt

0 0  (3.4) 
 
Given that the stress in the rth inclusion can be given as σ ε=r r rC , and using the equivalent 

method, the stress can be expressed in the terms of the matrix stiffness, 
 

*
0 ( )r r r r rC Cσ ε ε ε= = −  (3.5) 

 
As shown in Section 2, the perturbed strain and the eigenstrain for a single ellipsoidal inclusion, 
can be related using the Eshelby tensor, reading 
 
ε ε=r r rSpt *  (3.6) 
 
Using the above expressions, one finds that  
 

pt *
0 0r r r rSε ε ε ε ε= + = +  (3.7) 

 
Now, solving for *

rε in (3.5), 

 
* 1

0 0( )r r rC C Cε ε−= −  (3.8) 
 
and inserting into (3.7), 
  

1 dil
0 0 0 0( )r r r r r rS C C C Aε ε ε ε ε−= + − ⇒ =  (3.9) 

 
where 
 

dil 1 1
0 0[ ( )]r r rA I S C C C− −= + −  (3.10) 

 
Hence, the quantity dil

rA for the rth inclusion contains the Eshelby tensor, which depends on the 

shape of the inclusion, as described in Section 2. 
 
Furthermore, it is required that the volume-weighted average phase strain must equal the far-field 
applied strain. From this, a strain-concentration factor can be established, that accounts for the 
inclusion interaction by relating the average matrix strain in the composite to the uniform applied 
strain. The factor reads 
 

−−

=

 = +  
∑

11

0 0
1

N
dil

r r
r

A V I V A  (3.11) 
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In the rth inclusion, the strain-concentration factor in the non-dilute composites can be written as 
 

dil
0r rA A A=  (3.12) 

 
An effective stiffness for the composite for a unidirectionally aligned composite, can then be 
defined as  
 

−− − −

= = =

  = + = + +  
  

∑ ∑ ∑
11 1 1

dil
, 0 0 0 0 0 0

1 1 1

N N N
dil

C alligned r r r r r r r r
r r r

C V C A V C A V C V C A V I V A  (3.13) 

 
For a randomly distributed composite, on the other hand, averaging must be performed to take 
into account the orientations of the inclusions (In case of spherical inclusions, the result is the 
same). The stiffness matrix of the composite can now be expressed as [5], 
 

−− −

= =

  = + +  
  

∑ ∑
11 1

dil
, 0 0 0

1 1

{ } { }
N N

dil
C random r r r r r

r r

C V C V C A V I V A  (3.14) 

 
 where the curly brackets indicate the average of the quantity over all possible orientations.  
 
Note that the fourth-order tensors for the matrix and the inclusions in the most general case 
describe anisotropic materials. In case of transverse isotropic or isotropic material properties for 
the constituent materials of the composite, simplifications are possible.   

3.1.1 Orientationally-averaged fourth-order tensors 

The general expression for a randomly distributed composite in (3.14) contains an orientationally-
averaged fourth-order tensor that needs to be calculated.  
 
Generally, an orientationally-averaged fourth-order tensor ijklB  for a fourth-order tensor ijklB  in 

3D space can be written as, 
 

2 2

0 0

1
{ } ( , ) sin

2ijkl ijkl ijklB B B d d
π π

θ ϕ ϕ ϕ θ
π

= = ∫ ∫  (3.15) 

 
In the randomization, there is a need for transforming from local to global coordinates. The 
transformation matrix, taking full random distribution into account, may be expressed as [14] 
 

cos sin cos sin sin

sin cos cos cos sin

0 sin cos
ija

θ θ ϕ θ ϕ
θ θ ϕ θ ϕ

ϕ ϕ

 
 = − 
 − 

 (3.16) 
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This matrix has the property 1 Ta a− = , and the transformation from local to global coordinates 
may therefore be expressed as 
 

'( , )ijkl ir js kt lu rstuB a a a a Bθ ϕ =  (3.17) 
 
Now, for the thr inclusion, assuming that the 1’ axis is the inclusion axis, i.e. directed along the 
inclusion, and the other two local axis lie in the 2’-3’ plane and defined according to a right-hand 
coordinate system, we can calculate the orientationally-averaged tensor. Note that this is different 
from what was presented by Fisher and Brinson [5], where the 3’ axis is the inclusion axis; see 
Figure 3.1. Using standard contraction (as applied by [16], page 65) the resulting tensor 
component transformations can be expressed in matrix form. For 3D random orientation of the 
inclusions, 
 

11

22

33

12

21

13

31

23

32

44

55

66

24 64 0 16 16 0 0 0 0 0 0 64

24 9 45 6 6 10 10 5 5 20 40 24

24 9 45 6 6 10 10 5 5 20 40 24

8 8 0 12 32 20 0 40 0 0 0 32

8 8 0 32 12 0 20 0 40 0 0 32

8 8 0 12 32 20 0 40 0 0 0 321

8 8 0 32 12 0 20 0 4120

B

B

B

B

B

B

B

B

B

B

B

B

−

−

−
=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

11

22

33

12

21

13

31

23

32

44

55

66

0 0 0 32

8 3 15 2 2 30 30 15 15 20 40 8

8 3 15 2 2 30 30 15 15 20 40 8

8 3 15 2 2 10 10 5 5 20 40 8

8 8 0 8 8 0 0 0 0 40 20 28

8 8 0 8 8 0 0 0 0 40 20 28

B

B

B

B

B

B

B

B

B

B

B

B

−

− −

− −

− − − −

− −

− −

  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

















 (3.18) 

 
This latter expression is then used for the averaged quantity indicated by the curly brackets (3.14). 
Note that a similar expression for the case where the local 3’ axis is directed along the inclusion 
axis, may be established [5]. 

3.2 Vector-matrix notation 

Since the expressions in Section 3.1 include handling of fourth-order tensors, it will be 
advantageous to reduce the size of the involved quantities for implementation and calculations. 
Considering the involved quantities, the stress and strain second-order tensors are symmetric. 
Moreover, the fourth-order tensors have at least minor symmetry properties (e.g. the Eshelby 
tensor), or both minor and major symmetry properties (e.g. the elasticity tensors for the matrix 
and the inclusions).  
 
First, writing out the expression in (3.6) for the Eshelby tensor, and applying the symmetry 
properties of the strain tensors and the Eshelby tensor, we find that 
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 (3.19) 

 
Using engineering shear strains in the above relation, we obtain the expression 
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 (3.20) 

 
The coefficients of the Eshelby tensor in the two latter expressions are dependent on the geometry 
of the inclusion, as shown in Section 2. 
 
In a similar way, the general Hooke’s law for linear elastic solids can be expressed [2], 
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 (3.21) 

 
Note that the engineering shear strains have been applied also in the latter expression. 
 
The above relations are now employed in expressions similar to the final expressions in Section 
3.1 for aligned and randomly oriented ellipsoidal inclusions, (3.13) and (3.14), respectively. 
These expressions are relatively easy to implement in a computer program, such as Matlab. 
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4 Specialized expression for the elastic stiffness of 
nanocomposites 

The general derivation of the multi-phase Mori-Tanaka model in Section 3 considered composites 
with 1N −  inclusion phases. However, for most nanocomposites the matrix contains only one or 
two types of particle inclusions. Several papers therefore present more specialized analytical 
expressions based on for the Mori-Tanaka method for the elastic stiffness of nanocomposites. 
These expressions are then established for specific nanocomposites, containing inclusions with 
isotropic or anisotropic material properties, with a specific geometric shape, and with either 
aligned or random orientations. The simplest case is spherical isotropic inclusions, for which we 
do not have to take into account the direction dependency of the inclusions; composites with 
unidirectionally aligned and randomly distributed spherical isotropic inclusions have the same 
elastic properties. Composites with spherical inclusions having anisotropic material properties, or 
other (spheroidal) shapes, require more complex expressions that must take into account the 
orientation dependency.      
 
Examples of more specialized expressions for nanocomposites will be presented in the following 
subsections.  

4.1 Spherical inclusions 

4.1.1 Spheres with isotropic material properties 

Weng [17] presented a model for a two-phase composite, i.e. with one type of spherical isotropic 
inclusions. The normalized properties of the composite are given by the composite bulk modulus 

compκ   and shear modulus compµ , 
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 (4.1) 

 
where the material properties of the constituents are calculated from the isotropic bulk and shear 
moduli of the matrix (phase 0) and the inclusion (phase 1). Moreover, following their notation,  

0c and 1c are the volume fraction of the matrix and inclusion phase, respectively, with + =0 1 1c c .    

 
From the above expressions, the longitudinal Young’s modulus, normalized by the Young’s 
modulus of the matrix can be written, 
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In a similar way, a three-phase composite can be expressed, where the bulk moduli, shear moduli 
and the volume fractions of the three constituent materials are included. Details are found in the 
referred paper; the model is also described in [8]. 

4.1.2 Spheres with anisotropic material properties 

Qiu and Weng [18] presented a more general model for spherical inclusions that also include 
spherical inclusions with anisotropic material properties. An orientational averaging then needs to 
be included. Their expressions yield 
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(4.4) 

 
with 1k being the plane-strain bulk modulus, 1l the cross modulus, 1n the axial modulus under an 
axial strain, and  1m  and 1p  are the transverse and axial shear moduli, respectively. Phase 0 is the 
matrix, and phase 1 is the inclusion. Moreover, 0c and 1c are the volume fraction of the matrix and 

inclusion phase, respectively. 
 
In the case of isotropic material properties for phase 1, 1 1 11 3k κ µ= + , 1 1 12 3l κ µ= − , 

1 1 14 3n κ µ= + , and 1 1 1m p µ= = . In this case, 1κ and 1µ are the bulk and shear moduli, and the 
parameter 1a , i.e. the so-called  “anisotropic factor”, vanishes. 

4.2 Unidirectionally aligned spheroidal inclusions 

4.2.1 Tandon and Weng model 

Tandon and Weng [13] presented a model for the elastic moduli of a composite with 
unidirectionally aligned isotropic spheroidal inclusions, covering prolate (i.e. fibre-like) and 
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oblate (i.e.disc-like) inclusions, as well as spherical inclusions. The general constants applied in 
the derivations are given by 
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(4.5) 

 
In the above expressions, λq and µq ( = 0,1q ) are the Lamé constants of the matrix (phase 0) and 

inclusions (phase 1), respectively, which in terms of the Young’s modulus and Poisson’s ratio can 
be expressed as, 
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Finally, fV is now the volume fraction of the inclusion, and ijklS is the Eshelby tensor. 

 
From the above expressions, the longitudinal Young’s modulus, normalized by the Young’s 
modulus of the matrix, can be written, 
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4.3 Randomly oriented spheroidal inclusions 

4.3.1 Tandon and Weng model 

Tandon and Weng  [14] presented an analytical model for the effective moduli of a 3D randomly 
oriented nanocomposite. This is in fact the only analytical model based on the Mori-Tanaka 
method the author has found for randomly oriented spheroidal inclusions applicable to fibre-like 
inclusions; the model includes all types of spheroidal inclusions with an aspect ratio α .  
 
The matrix and the inclusions have linear isotropic material properties.  Expressions for the 
effective bulk modulus and the effective shear modulus are established. These moduli are then 
applied for calculating the effective Young’s modulus of the composite. 
 
The effective bulk and shear moduli of the composite are in this case given by 
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respectively, where c is the volume fraction of the inclusions, and with 2 1/p p p= , and 

2 1/q q q= , where 
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The constants ia ( 1,2,3,4,5i = ) and a  in the above expressions are functions of the material 

properties of the constituent materials and the Eshelby tensor.  
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From the above quantities, the normalized Young’s modulus for the composite can be expressed 
as 
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Unfortunately, the expression for the constant a is not completely written out in the paper. The 
model is therefore not directly accessible for implementation and for comparison with the other 
modeling approaches. 

4.3.2 Qiu and Weng model 

Qiu and Weng [18] presented models for randomly oriented needles (or circular fibres) and 
randomly oriented thin discs, in addition to the model for spherical inclusions with anisotropic 
material properties, as described in Section 4.1.2. 
 
In case of randomly oriented needle inclusions, 
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where the Voigt bounds Vκ and Vµ  are given by 
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with 
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In the case of isotropic material properties for the inclusions, 1 1 1m p µ= = . 
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For randomly oriented discs the expressions yield 
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 where the Voigt bounds are given in (4.13). 
   
In both cases, the Young’s modulus can be expressed as 
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The parameters in the above expressions are the same as for the model described in Section 4.1.2. 

5 Nanoparticle/epoxy composite systems 
Different nanoparticle/polymer systems are presented in the literature. In this report, a set of five 
relevant systems are considered in the analysis. In all cases, the epoxy and the inclusion materials 
have isotropic properties.  
 
The material properties for the first two composite systems considered are given in Table 5.1 and 
Table 5.2 for a glass/epoxy composite [14] and a graphite/epoxy composite [18], respectively. 
The epoxies are a bit different for these two composite systems. However, the graphite inclusion 
has a much higher Young’s modulus compared to glass, effects of which can be seen in the 
composite elastic stiffness comparison. 
 

Table 5.1 Material data for glass/epoxy nanocomposites, with elastic properties from [14]. 

Material parameter Unit Value 
Matrix:   
Young’s modulus GPa 2.76 
Poission’s ratio  0.35 
Glass inclusion:   
Young’s modulus GPa 72.4 
Poisson’s ratio  0.20 
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Table 5.2 Material data for graphite/epoxy nanocomposites, with elastic properties from [18]. 

Material parameter Unit Value 
Matrix:   
Young’s modulus GPa 3.50 
Poission’s ratio  0.42 
Graphene inclusion:   
Young’s modulus GPa 226.93 
Poission’s ratio  0.30 
 
For the three following systems, experimental data are also available for comparing with the 
models results. Different surface treatments and accelerators are applied for the systems involved. 
This requires detailed knowledge of material chemistry, which is outside the scope of the current 
study. Thus, in this report only the elastic parameters are applied in the models, without focusing 
on the test specimen preparation.  
 
Johnsen et al. [19] have presented results from preparation and characterization of 
nanoalumina/epoxy composites. The elastic properties in this case are given in Table 5.3. Two 
different nanoparticles were considered in the work: 1) spherical particles, and 2) whiskers (i.e. 
fibre-like) particles. The alumina particles have a higher stiffness than graphite, which makes this 
system relevant to compare with the two first systems. 
 

Table 5.3 Material data for alumina/epoxy nanocomposites, with elastic properties from [19]. 

Material parameter Unit Value 
Matrix:   
Young’s modulus GPa 3.12 
Poission’s ratio  0.35 
Alumina inclusion:   
Young’s modulus GPa 386 
Poission’s ratio  0.22 
 
Johnsen et al. [20] have also presented results from preparation and characterization of 
nanosilica/epoxy composites. The silica particles are spherical. Johnsen et al. report a very good 
dispersion of the particles – at least for the low particle concentrations. The elastic properties in 
this case are given in Table 5.4; the Poisson’s ratio of the silica particles is not given by Johnsen 
et al., and is thus set to 0.20. 
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Table 5.4 Material properties for nanosilica/epoxy composites, with elastic properties from 
[20]. 

Material parameter Unit Value 
Matrix:   
Young’s modulus GPa 2.96 
Poisson’s ratio  0.35 
Silica inclusion:   
Young’s modulus GPa 70 
Poisson’s ratio  0.20 
 
Graphene oxide (GO) has also been considered as a relevant filler material in nanocomposites, 
see e.g. Gudarzi and Sharif [21] . Material values for a composite with functionalized graphene 
oxide (fGO) in an epoxy matrix are given in Table 5.5.  Since Gudarzi and Sharif compare their 
experimental results with the Halpin-Tsai model, no Poisson’s ratio is given. For simplicity, the 
same Poisson’s ratio value is applied for both the fGO and epoxy in the current calculations, 
where the value is based on a typical value found for carbon nanotubes (CNTs). 
 

Table 5.5 Material data for fGO/epoxy composites [21]. 

Material parameter Unit Value 
Matrix:   
Young’s modulus GPa 2.80 
Poission’s ratio  0.35 
fGO inclusion:   
Young’s modulus GPa 250 
Poission’s ratio  0.35 

6 Comparison of model results 
The purpose of the current section is to verify the code implementation and to compare the model 
results obtained from using the general multi-phase Mori-Tanaka model in Section 3 with the 
calculations from employing the specialized expressions in Section 4.  Some experiences with the 
model implementation are also included. 
 
Three of the material systems in Section 5 are included in the results summary presented in this 
section, that is the glass/epoxy composite (Table 5.1), the graphite/epoxy (Table 5.2) and the 
alumina/epoxy (Table 5.3) composite systems. In the next section (see Section 7), some of the 
model results will also be compared to experimental data. 
 
The models have been implemented in the commercial software package Matlab. The complete 
code in each case is given in Appendix B. 
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6.1 Spherical inclusions 

The models for composites with isotropic spherical inclusions included in this study, are 
compared, and the calculated elastic stiffness, as a function of the volume fraction of the 
inclusions, is found to agree and be the same for all models.  
 
The isotropic spherical particles are independent of orientation. For verification of the code 
implementation, the implemented models for randomly oriented spherical particles, with isotropic 
material properties, are also run. These model results also agree with the model results for aligned 
spherical inclusions, as expected. 
 
When applying the general multi-phase Mori-Tanaka model (in Section 3), no orientational 
averaging of the quantities in the second factor of (3.14)  is performed. Otherwise the same elastic 
stiffness is not obtained for the case of randomly orientation spheres and aligned spheres. This 
deviates from the stiffness expression for random oriented inclusions, where an averaging is 
performed. Why an orientation averaging of the second factor of (3.14) affects the elastic stiffness 
for composites spherical isotropic inclusions is not clear. It might be that the averaging operation 
matrix is not applicable for spherical particles, or that the case of spherical particles is not covered 
by this particular model; enough details are not provided by Fisher and Brinson [5]. It should also 
be mentioned that the elastic stiffness for the composite with spherical randomly oriented 
(isotropic) particles deviates significantly from the stiffness calculated by the model for the 
composite with aligned spherical (isotropic) inclusions for high volume fractions, i.e. for volume 
fractions higher than 0.2. High volume fractions are, however, not relevant for this type of 
composite.   
 
Figure 6.1 shows the normalized Young’s modulus for the composite as a function of volume 
fraction of the inclusion material for three of the composite material systems considered. For low 
concentrations, the stiffness increase is slightly different for the three systems, and is dominated 
by the elastic stiffness of the polymer matrix. The graphite/epoxy composite is thus the composite 
with the largest stiffness increase. The glass/epoxy composite results in the lowest stiffness 
increase, and the alumina/epoxy composite is somewhere in-between.  A larger difference in the 
elastic stiffness increase is observed for higher volume fractions, see Figure 6.2, where the 
stiffness properties of the inclusion become the more dominant material. The alumina/epoxy 
composite then becomes the composite with the highest elastic stiffness. The results are as 
expected.  
 
As a separate case, the spherical inclusion phase in the three matrix systems is assumed to have 
zero stiffness, i.e. simulating voids in the matrix. Figure 6.3 shows this case. Since the three 
epoxy systems have close to the same elastic stiffness, the values are very similar, and hence only 
one curve is shown in the plot. As expected, there is a reduction in the stiffness of the matrix due 
to the void content, and the stiffness is dramatically reduced for higher void fractions. 
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Figure 6.1 Spherical inclusions. Three different composite materials are considered. 

 

 

Figure 6.2 Spherical inclusions. Three different composite materials are considered. 
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Figure 6.3 Composite elastic stiffness as a function of volume fraction of voids in the matrix. 

6.2 Fibre-like inclusions 

For nanocomposites with fibre-like inclusions, different elastic stiffness in the load direction will 
be obtained for the case of aligned inclusions and for the case of randomly oriented inclusions. In 
the case of randomly oriented fibre-like inclusions, only the general Mori-Tanaka model in 
Section 3 is available. 

6.2.1 Aligned inclusions 

For the case of aligned fibre-like inclusions, the aspect ratio is set to 20α = . The composite 
elastic stiffness calculated from employing the two available and implemented models for aligned 
fibre-like inclusions agree very well. 
 
Figure 6.4 and Figure 6.5 show the normalized composite elastic stiffness for the three material 
systems considered. As is observed, the stiffness properties of the inclusions dominate the 
stiffness of the composite for all volume fractions. This is different from the stiffness calculations 
for the composites with spherical particles considered in Section 6.1, where the inclusion phase 
dominated for very high volume fractions only. The stiffness is highest for the alumina/epoxy 
composite, and lowest for the glass/epoxy composite. In this case, the graphite/epoxy composite 
is somewhere in between. This is as expected. 
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Figure 6.4 Fibre-like aligned inclusions. Three different composites are considered. 

 

 

Figure 6.5 Fibre-like aligned inclusions. Three different composites are considered. 
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6.2.2 Randomly oriented inclusions 

For randomly oriented inclusions, only the general multi-phase Mori-Tanaka model is available. 
The three different material systems considered are included in the comparison. For the systems, 
the aspect ratio is set to 20α = .  
 
As can be seen in Figure 6.6 and Figure 6.7, the composite stiffness is dominated by the elastic 
stiffness of the inclusions. The highest stiffness is obtained for the alumina/epoxy composite, and 
the results are similar to the case of aligned fibre-like inclusions, see Section 6.2.1. Also, note that 
the stiffness of the composites with aligned inclusions is 2-3 times higher than for the composites 
with randomly oriented inclusions.  
 

 

Figure 6.6 Fibre-like randomly oriented inclusions. Three different composite materials are 
considered. 
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Figure 6.7 Fibre-like randomly oriented inclusions. Three different composite materials are 
considered. 

6.3 Disc shaped inclusions 

6.3.1 Aligned 

Two different models are implemented for aligned disc shaped, or oblate shaped, inclusions. The 
aspect ratio is set to 0.5α = .The calculated elastic stiffness agree for the two models. 
 
The three composite systems are included also in this case. Figure 6.8 shows the composites 
stiffness for low volume fractions. The matrix seems to dominate the elastic stiffness of the 
composite, and hence the graphite/epoxy composite has the highest stiffness increase, and the 
glass/epoxy composite has the lowest stiffness increase. Considering the same material systems 
for higher concentrations, as shown in Figure 6.9, the stiffness of the inclusions starts to 
dominate, and the alumina/epoxy composite then has the highest elastic stiffness value. The 
results are as expected. 
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Figure 6.8 Disc shaped aligned inclusions. Three different composite materials are considered. 

 

 

Figure 6.9 Disc shaped aligned inclusions. Three different composite materials are considered. 
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6.3.2 Randomly oriented 

Two different models are available for randomly oriented disc shaped inclusions. The models are 
not directly comparable, due to the fact that the Qiu and Weng model [18] does not explicitly 
contain the aspect ratio of the inclusions. For the general multi-phase Mori-Tanaka model, on the 
other hand, the aspect ratio can be set and adjusted. In this test case, the model results are 
therefore plotted in separate plots. It should, however, be mentioned that setting the aspect ratio to 

0.00005α =  in the general Mori-Tanaka model, i.e. very flat discs, gives the same stiffness 
values as obtained from the Qiu-Weng model. 

6.3.2.1 Qiu and Weng model 

The normalized composite elastic stiffness for the three considered material systems is shown in 
Figure 6.10. In the same way as for randomly oriented fibre-like inclusions, the composite 
stiffness is dominated by the stiffness of the inclusions. As expected, the alumina/epoxy 
composite has the highest elastic stiffness. 
 

 

Figure 6.10 Disc shaped randomly oriented inclusions. Three different composite materials are 
considered. 

6.3.2.2 The general Mori-Tanaka model  

The normalized composite stiffness using the general multi-phase Mori-Tanaka model is shown 
in Figure 6.11. The aspect ratio is set to 0.5. With this aspect ratio, the stiffness of the matrix 
dominates the composite stiffness for low volume fractions, see Figure 6.11. For higher volume 
fractions, see Figure 6.12, the inclusion material dominates the composite stiffness.   
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Figure 6.11 Disc shaped randomly oriented inclusions. Three different composite materials are 
considered. 

 

 

Figure 6.12 Disc shaped randomly oriented inclusions. Three different composite materials are 
considered. 
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6.4 Needles 

6.4.1 Randomly oriented 

One model is available for needle shaped inclusions. The calculated composite stiffness as a 
function of volume fraction is shown in Figure 6.13 for the three composite material systems 
considered. As the fibres are very long, the inclusion stiffness dominates the composite stiffness 
and the alumina/epoxy composite has the highest elastic stiffness. 
 
This case is the most relevant case for comparison with continuous fibre models. Moreover, it 
shows the range of possible nanocomposite materials that can be modelled using the Mori-Tanaka 
method. 
 

 

Figure 6.13 Needle shaped randomly oriented inclusions. Three different composite materials 
are considered. 

7 Comparison with experimental data 
For some of the composite systems listed in Section 5, experimental data is available. The 
purpose of this section is to compare the model calculation with experimental data. As a 
conclusion from Section 6, the general multi-phase Mori-Tanaka model and the more specialized 
models give the same composite stiffness as a function of volume fraction. Therefore, in this 
section only the general Mori-Tanaka model has been applied in the comparison with the 
experimental data.   
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7.1 Alumina/epoxy composite 

7.1.1 Spherical inclusions 

Experimental data for spherical nanoalumina particles embedded in epoxy is given in Table 7.1. 
Two different techniques are applied for the dispersion of the particles, that is, horn sonication 
and bath sonication. Moreover, a silane (GPS) surface treatment is applied for improving the 
adhesion between the particles and the surrounding matrix. More details are found in [19]. The 
data set is very small, which means that it may be difficult to draw any conclusions on the 
agreement between the calculated elastic stiffness and the experimental values. However, 
improved understanding on the effect of alumina inclusions can be obtained. 
 

Table 7.1 Experimental results for the elastic properties of alumina/epoxy nanocomposites 
with spherical inclusions. The data are taken from [19]. 

Material type Sonication wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A N/A 0.0 3120 ± 110 
NT-50nm Bath 1.0 0.00350 3150 ± 100 
NT-50nm Bath 4.0 0.01385 3220 ± 130 
NT-50nm Horn 1.0 0.00345 3400 ± 190 
NT-50nm Horn 2.9 0.01025 3240 ±   70 
GPS-50nm Bath 3.0 0.01060 3290 ± 130 
GPS-50nm Horn 1.0 0.00345 3130 ±   60 
(NT= Non-treated; GPS = silane treated)  
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Figure 7.1 Mori-Tanaka models for spherical inclusions. Model results are compared with 
experimental data from Johnsen et al. [19] . 

 
The black curve in Figure 7.1 gives the normalized Young’s modulus of the nanoalumina/epoxy 
composite with spherical inclusions as a function of particle volume fraction. As can be observed 
in the figure, there is good correspondence between the model results and the experimental data 
in case of employing the bath sonication procedure. For the test specimen where the horn 
sonication procedure has been used, and the case of using horn sonication together with particle 
surface treatment, the model seems to underestimate the stiffness. For specimens where the GPS 
treated particles  are dispersed using bath sonication, the Mori-Tanaka model overestimates the 
elastic stiffness of the composite.  
 
In addition to the case of perfect spherical particles, curves are also included in the plot for cases 
where the particles have a slightly deformed shape. Two different shapes are included, that is 1) a 
prolate shape, with aspect ratio 2, and 2) an oblate shape, with aspect ratio 0.5. Both aligned and 
randomly distributed inclusions are considered and plotted since the orientation now will affect 
the stiffness in the load direction. As can be seen in Figure 7.1, the prolate and oblate random 
orientations result in the same stiffness increase. This is as expected, because of the choice of 
aspect ratios. The curves are also very close to the curve for spherical particles. The aligned 
prolate particle case, as shown by the green curve, gives a higher stiffness compared to spherical 
particles. This model prediction agrees with the experimental data for the test specimens where 
bath sonication is used. Finally, the aligned oblate particle case results in a lower stiffness for the 
composite, which seems to underestimate the stiffness values obtained in the experiments.   
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7.1.2 Fibre-like inclusions 

The experimental data for alumina whisker inclusions are shown in Table 7.2. In the same way as 
for the spherical particles, two different sonication techniques are applied. In this case, no surface 
treatment is applied for improving of the adhesion between the particles and the surrounding 
matrix. The aspect ratio is set to 20; the value is chosen to get a best fit with the experimental 
data. In the same way as for the spherical alumina particles, more data is required before drawing 
any conclusions on the behaviour and properties of the nanocomposite. 
 

Table 7.2 Experimental results for the elastic properties of alumina/epoxy nanocomposites 
with whisker inclusions. The data are taken from [19]. 

Material type Sonication wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A N/A 0.0 3120 ± 110 
NT-whiskers Bath 0.1 0.00035 3310 ± 140 
NT-whiskers Bath 1.0 0.00350 3360 ± 110 
NT-whiskers Bath 3.0 0.01060 3450 ± 170 
NT-whiskers Bath 5.0 0.01730 3540 ± 130 
NT-whiskers Horn 0.1 0.00035 3210 ± 190 
NT-whiskers Horn 1.0 0.00345 3390 ± 120 
NT-whiskers Horn 2.9 0.01025 3360 ± 140 
(NT = Non-treated; GPS = silane treated) 
 
As can be observed from Figure 7.2, the calculated elastic stiffness of the nanocomposite with 
randomly oriented whiskers inclusions agrees very well with the experimental data. The good 
match for the aspect ratio of 20 is unexpected.  Information provided by the supplier, indicates an 
aspect ratio of around 100. The whiskers may, however, be broken during the sonication, and all 
whiskers may not have the same initial aspect ratio. Moreover, the assumption of perfect 
dispersion, optimal load transfer and a perfect random distribution may also be part of the 
explanation. 
 
For comparison, the case of aligned whiskers with the same aspect ratio (i.e. 20α = ) is also 
plotted in Figure 7.2, see the magenta curve. This stiffness curve may be seen as an upper bound 
for the elastic stiffness of the nanocomposite. The model overestimates the elastic stiffness of the 
composite – especially for higher volume fractions. 
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Figure 7.2 Mori-Tanaka model for randomly oriented whiskers.  Model results are compared 
with experimental data from Johnsen et al. [19] . 

7.1.2.1 Aspect ratio 

To further investigate the mechanical properties of the alumina whiskers/epoxy composite, the 
composite stiffness for different aspect ratios are calculated. Figure 7.3 and Figure 7.4 show the 
results for aligned and randomly oriented whiskers, respectively. The composite elastic stiffness 
increases as the aspect ratio value is increased. For aspect ratios higher than 1000, no significant 
improvement of the stiffness is obtained. The cyan curve therefore indicates a practical upper 
limit for the elastic stiffness of the nanocomposite. 
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Figure 7.3 Aligned alumina whiskers. 

 

 

Figure 7.4 Random alumina whiskers. 
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7.2 Silica/epoxy composites 

Experimental results for the elastic stiffness of silica/epoxy nanocomposites are reported by 
Johnsen et al. [20]. The obtained elastic stiffness values for the nanocomposites with spherical 
nanosilica particles are given in Table 7.3. 
 

The blue curve in Figure 7.5 shows the model results from using the general two-phase Mori-
Tanaka model. As can be seen, the results agree very well for higher volume fractions. For lower 
volume fractions, the Mori-Tanaka model underestimates the elastic stiffness of the composite. 
One explanation to this may be that the interphase effects need to be taken into account, as 
emphasized by, e.g., Fisher and Brinson [5]. For lower volume fractions this is crucial to include 
in the modelling, whereas the same effect do not seem to be significant for higher volume 
fractions. A further study of this case is included in [9]. 

 

Table 7.3 Experimental results for the elastic properties of silica/epoxy composites with 
spherical inclusions. The data are taken from [20]. 

Material type wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A 0.0 2960 ± 200 
Nanosilica-epoxy 4.1 0.025 3200 ± 150 
Nanosilica-epoxy 7.8 0.049 3420 ± 180 
Nanosilica-epoxy 11.1 0.071 3570 ± 130 
Nanosilica-epoxy 14.8 0.096 3600 ±   50 
Nanosilica-epoxy 20.2 0.134 3850 ± 240 
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Figure 7.5 Silica/epoxy composite. Experimental results from Johnsen et al. [20]. 

7.3 Graphene oxide/epoxy composites 

Some experimental results for nanocomposites with amine-fuctionalized graphene oxide (fGO) 
particles are reported by Gudarzi and Sharif  [21]. The experimental stiffness values for different 
vol% of fGO particles are based on Figure 12 in [21]. 
 
Gudarzi and Sharif compares the experimental results to the Halpin-Tsai model for aligned short-
fibre composites. In their paper, this model is referred to as a model for randomly oriented fibre-
like particles. Perfect bonding is assumed between the particles and the matrix, and the applied 
aspect ratio of the particles is 350α = .  
 
As can be seen from Figure 7.6, the experimental results agree well with the Halpin-Tsai model 
and the Mori-Tanaka model for aligned inclusions. No alignment is, however, performed in the 
preparation of the test specimen. Also, observe that the experimental results do not agree well 
with the Mori-Tanaka model for random orientation of the fGOs. Other effect than alignment of 
the particles may contribute to the stiffness improvement obtained experimentally.  
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Figure 7.6 Functionalized graphene oxide/epoxy composites. Experimental data from [21]. 

8 Summary 
In this report, several models for the elastic stiffness of nanocomposites have been described. All 
models are based on the method by Mori and Tanaka for spheroidal inclusions in a matrix, and 
the theory by Eshelby is applied for including the effect of the inclusions. The Mori-Tanaka 
method is applicable to particles with spheroidal shapes, including aligned and randomly oriented 
particles. Specialized expressions for nanocomposites with a specific inclusion geometry and 
orientation are also established. A more general two-phase Mori-Tanaka model is also developed. 
The latter model is applicable to particles of different spheroidal shape, and both aligned and 
randomly oriented particles. All models are implemented in the commercial software package 
Matlab. 
 
The models are compared and found to agree very well for different particle shapes. Three 
different material systems are considered, where the stiffness properties of the constituent 
materials of the composite systems vary. For spherical particles, the stiffness increase for the 
composites is dominated by the matrix stiffness for low volume fractions and by the particle 
stiffness for high volume fractions. For non-spherical particles, the composite elastic stiffness is 
dominated by the particles for both low and high volume fractions.    
 
The composite stiffness calculations from using the general two-phase Mori-Tanaka model are 
also compared with experimental data for three different nanocomposites. The model calculations 
are found to agree well with most of the experimental data. Including other effects in the models 
may, however, be required.  
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Future studies should include models for studying the elastic stiffness of nanocomposites with 
more than one inclusion phase. In case of more than one type of inclusion, the inclusion phases 
may, for example, be two different types of particles. Alternatively, one of the inclusion phases 
can be a particle, whereas the other phase is voids. A third possibility is a nanocomposite with a 
combination of dispersed particles and agglomerates of (the same) particles, where the particle 
agglomerates are treated as an inclusion material with different properties compared to the 
dispersed particles.  Further, future research could study the influence of an interphase region 
surrounding the particles. The interphase elastic properties are generally higher or lower than the 
properties of the bulk matrix. The thickness of the interphase may also influence the elastic 
stiffness of the composite.   
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Appendix A Model summary 
Table A.1 and Table A.2 give the Matlab file name for each of the implemented model, as well as 
references to the papers and types of inclusions. 
 
The Matlab codes for all models are given in Appendix B. 
 

Table A.1 Models for aligned inclusions. 

File name Reference Inclusion geometry 
Spherical Fiber-like Disc shaped 

mori_tanaka_1.m [13] X X X 
mori_tanaka_3.m [5;13;14] X X X 

 

Table A.2 Models for randomly oriented inclusions. 

File name Reference Inclusion geometry 
Spherical
isotropic 

Spherical 
anisotropic 

Fiber-
like 

Disc 
shaped 

Needles 
(circular 
fibres) 

mori_tanaka_4.m [18] X X  X X 
mori_tanaka_5.m [17] X     
mori_tanaka_6.m [5;13;14] (*) X  X X  
mori_tanaka_7.m [5;13;14] (**) X  X X  

(*)  Local inclusion axis being the 1’ axis. Eshelby tensors as in the referenced papers. 

(**) Local inclusion axis being the 3’ axis. Redefined Eshelby tensors compared to referenced  
       papers. 
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Appendix B Matlab code 

B.1 General Mori-Tanaka model for aligned inclusions 

% Mori-Tanaka – general model 

% File name: “mori_tanaka_3.m” 

% Generally: Model N-1 spheroidal shaped inclusions in an isotropic 

matrix 

% This case: One type of isotropic inclusion 

% Three geometries: 

% 1) aligned spherical inclusions 

% 2) aligned fibre-like inclusions with aspect ratio 

% 3) aligned disc-shaped inclusion with aspect ratio 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

   

% Elastic properties - matrix 

E_0 = 2.96  

nu_0 = 0.35 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 

C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 

C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic properties - inclusion 

E_i = 70  

nu_i = 0.20 

 

D = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

D(1,1) = const;   

D(1,2)= const*(nu_i/(1-nu_i)); 
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D(1,3)= const*(nu_i/(1-nu_i)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_i/(1-nu_i)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 

D(3,3) = const; 

D(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D; 

 

% Geometry: 

geom = 1  % spherical inclusions 

%geom = 2  % fibre-like inclusions 

%geom = 3  % disc shaped inclusions 

 

if (geom == 1) 

  % Spherical inclusions: 

  S_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  S_2222 = S_1111 

  S_3333 = S_1111 

  S_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  S_1133 = S_1122 

  S_2211 = S_1122 

  S_2233 = S_1122 

  S_3311 = S_1122 

  S_3322 = S_1122 

  S_1212 = (4-5*nu_0)/(15*(1-nu_0))  

  S_1221 = S_1212 

  S_2323 = S_1212 

  S_2332 = S_1212 

  S_3131 = S_1212 

  S_3113 = S_1212 

   

elseif (geom == 2) 

  % Fiber-like inclusions: 

  l = 1000       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 
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  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

 

elseif (geom == 3) 

  % Disc-shaped inclusions 

  l = 0.5       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 
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end  

 

% Eshelby tensor (using engineering strains) 

S = zeros(6,6); 

 

% Matrix form: 

S(1,1) = S_1111; 

S(1,2) = S_1122; 

S(1,3) = S_1133; 

S(2,1) = S_2211; 

S(2,2) = S_2222; 

S(2,3) = S_2233; 

S(3,1) = S_3311; 

S(3,2) = S_3322; 

S(3,3) = S_3333; 

S(4,4) = 2*S_1212; 

S(5,5) = 2*S_2323; 

S(6,6) = 2*S_3131; 

S; 

 

% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 

I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 

 

A_dil = inv(I+S*inv(C)*(D-C)) 

Vf = 0.0:0.001:0.2;  

 

for i =1:length(Vf)  

  V0 =(1-Vf(i));  

  A_0 = inv(V0*I + Vf(i)*A_dil);  

  A_r = A_dil*A_0; 

  C_comp = V0*C*A_0 + Vf(i)*D*A_r 

   

  % Calculating the composite elastic stiffness 

  if (geom == 1) 

    % Isotropic material properties 

    nu_c = C_comp(1,2)/(C_comp(1,1)+C_comp(1,2)); 
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    E_c  = 2*C_comp(4,4)*(1+nu_c); 

    E_11(i) = E_c/E_0; 

  elseif (geom == 2) 

    % Transversely isotropic proerties 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  elseif (geom == 3) 

    % Transversely isotropic proerties 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  end 

end 

 

if (geom ==1) 

  plot(Vf,E_11,'b') 

elseif (geom == 2) 

  plot(Vf,E_11,'c') 

elseif (geom == 3) 

  plot(Vf,E_11, 'r') 

end 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 

B.2 General Mori-Tanaka model for randomly oriented inclusions 

% Mori-Tanaka – general model 

% File name: “mori_tanaka_6.m” 

% Generally: Model N-1 shperoidal shaped inclusions in an  

% isotropic matrix 

% This case: One type of isotropic inclusion 

% Three geometries: 

% 1) random spherical inclusions 

% 2) random fibre-like inclusions with aspect ratio 

% 3) random disc-shaped inclusion with aspect ratio 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

   

% Elastic parameters - matrix 

E_0 = 3.12 

nu_0 = 0.35 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 
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C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 

C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic parameters - inclusion 

E_i = 386 

nu_i = 0.22  

 

D = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

D(1,1) = const;   

D(1,2)= const*(nu_i/(1-nu_i)); 

D(1,3)= const*(nu_i/(1-nu_i)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_i/(1-nu_i)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 

D(3,3) = const; 

D(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D; 

 

% Geometry: 

geom = 1  % spherical inclusions 

%geom = 2  % fibre-like inclusions 

%geom = 3  % disc-shaped inclusions 

 

if (geom == 1) 

  % Spherical inclusions: 

  S_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  S_2222 = S_1111 

  S_3333 = S_1111 
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  S_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  S_1133 = S_1122 

  S_2211 = S_1122 

  S_2233 = S_1122 

  S_3311 = S_1122 

  S_3322 = S_1122 

  S_1212 = (4-5*nu_0)/(15*(1-nu_0))  

  S_1221 = S_1212 

  S_2323 = S_1212 

  S_2332 = S_1212 

  S_3131 = S_1212 

  S_3113 = S_1212 

   

elseif (geom == 2) 

  % Fiber-like inclusions: 

  l = 1000      % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio   

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

 

elseif (geom == 3) 

  % Disc-shaped inclusions 

  l = 0.00005       % fibre length 

  d = 1       % fibre diameter 
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  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

  S_3131 = S_1313; 

end  

 

% Eshelby tensor (using engineering strains) 

S = zeros(6,6); 

% Matrix form: 

S(1,1) = S_1111; 

S(1,2) = S_1122; 

S(1,3) = S_1133; 

S(2,1) = S_2211; 

S(2,2) = S_2222; 

S(2,3) = S_2233; 

S(3,1) = S_3311; 

S(3,2) = S_3322; 

S(3,3) = S_3333; 

S(4,4) = 2*S_1212; 

S(5,5) = 2*S_2323; 

S(6,6) = 2*S_3131; 

S; 

 

% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 
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I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 

 

A_dil = inv(I+S*inv(C)*(D-C)) 

 

% Averaging matrix  

M =(1/120)*[24 64 0 16 16 0 0 0 0 0 0 64; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 

  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 -10 -10 -5 -5 20 40 8; 

  8 8 0 -8 -8 0 0 0 0 40 20 28; 

  8 8 0 -8 -8 0 0 0 0 40 20 28] 

 

D_A_dil = D*A_dil 

 

% Averaging of D_A_dil 

D_A_dil_vec(1) = D_A_dil(1,1); 

D_A_dil_vec(2) = D_A_dil(2,2); 

D_A_dil_vec(3) = D_A_dil(3,3); 

D_A_dil_vec(4) = D_A_dil(1,2); 

D_A_dil_vec(5) = D_A_dil(2,1); 

D_A_dil_vec(6) = D_A_dil(1,3); 

D_A_dil_vec(7) = D_A_dil(3,1); 

D_A_dil_vec(8) = D_A_dil(2,3); 

D_A_dil_vec(9) = D_A_dil(3,2); 

D_A_dil_vec(10) = D_A_dil(4,4); 

D_A_dil_vec(11) = D_A_dil(5,5); 

D_A_dil_vec(12) = D_A_dil(6,6); 

 

D_A_dil_aver_vec = M*transpose(D_A_dil_vec); 

 

D_A_dil_aver(1,1) = D_A_dil_aver_vec(1);  

D_A_dil_aver(2,2) = D_A_dil_aver_vec(2);  
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D_A_dil_aver(3,3) = D_A_dil_aver_vec(3);  

D_A_dil_aver(1,2) = D_A_dil_aver_vec(4);  

D_A_dil_aver(2,1) = D_A_dil_aver_vec(5);  

D_A_dil_aver(1,3) = D_A_dil_aver_vec(6);  

D_A_dil_aver(3,1) = D_A_dil_aver_vec(7);  

D_A_dil_aver(2,3) = D_A_dil_aver_vec(8);  

D_A_dil_aver(3,2) = D_A_dil_aver_vec(9);  

D_A_dil_aver(4,4) = D_A_dil_aver_vec(10);  

D_A_dil_aver(5,5) = D_A_dil_aver_vec(11);  

D_A_dil_aver(6,6) = D_A_dil_aver_vec(12);  

D_A_dil_aver;   

     

% Averaging of A_dil 

A_dil_vec(1) = A_dil(1,1); 

A_dil_vec(2) = A_dil(2,2); 

A_dil_vec(3) = A_dil(3,3); 

A_dil_vec(4) = A_dil(1,2); 

A_dil_vec(5) = A_dil(2,1); 

A_dil_vec(6) = A_dil(1,3); 

A_dil_vec(7) = A_dil(3,1); 

A_dil_vec(8) = A_dil(2,3); 

A_dil_vec(9) = A_dil(3,2); 

A_dil_vec(10) = A_dil(4,4); 

A_dil_vec(11) = A_dil(5,5); 

A_dil_vec(12) = A_dil(6,6); 

  

A_dil_aver_vec = M*transpose(A_dil_vec); 

 

A_dil_aver(1,1) = A_dil_aver_vec(1);  

A_dil_aver(2,2) = A_dil_aver_vec(2);  

A_dil_aver(3,3) = A_dil_aver_vec(3);  

A_dil_aver(1,2) = A_dil_aver_vec(4);  

A_dil_aver(2,1) = A_dil_aver_vec(5);  

A_dil_aver(1,3) = A_dil_aver_vec(6);  

A_dil_aver(3,1) = A_dil_aver_vec(7);  

A_dil_aver(2,3) = A_dil_aver_vec(8);  

A_dil_aver(3,2) = A_dil_aver_vec(9);  

A_dil_aver(4,4) = A_dil_aver_vec(10);  

A_dil_aver(5,5) = A_dil_aver_vec(11);  

A_dil_aver(6,6) = A_dil_aver_vec(12);  

A_dil_aver;   
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Vf = 0.0:0.001:0.2;  

for i =1:length(Vf) 

  V0 =(1-Vf(i));  

  if (geom == 1) 

    A_0 = inv(V0*I + Vf(i)*A_dil);   % gives the correct spherical 

distr. 

  elseif (geom == 2) 

    A_0 = inv(V0*I + Vf(i)*A_dil_aver); % gives a transversely iso 

C_comp 

  elseif (geom == 3) 

    A_0 = inv(V0*I + Vf(i)*A_dil_aver); 

  end 

   

  C_comp = (V0*C + Vf(i)*D_A_dil_aver)*A_0 

 

  if (geom == 1) 

    % Isotropic material properties 

    nu_c = C_comp(1,2)/(C_comp(1,1)+C_comp(1,2)); 

    E_c  = 2*C_comp(4,4)*(1+nu_c); 

    E_11(i) = E_c/E_0; 

  elseif (geom == 2) 

    % Transversely isotropic properties 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  elseif (geom == 3)  

    % Transversely isotropic proerties% 

    S_comp = inv(C_comp); 

    E_11(i) = 1/(S_comp(1,1)*E_0); 

  end 

end 

 

if (geom ==1) 

  plot(Vf,E_11,'r') 

elseif (geom == 2) 

  plot(Vf,E_11, 'c') 

elseif (geom == 3) 

  plot(Vf,E_11, 'r--') 

end 

xlabel ('V_f') 

ylabel('E_{comp}/E_0') 
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B.3 Weng model 

% Refererence: Weng, 1984 

% File name: ”mori_tanaka_5.m” 

% This case: One type of isotropic inclusion 

% One geometry: random spherical inclusions 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Elastic properties - matrix 

E_0 = 2.76  

nu_0 =  0.35 

mu_0 = E_0/(2*(1+nu_0)) 

kappa_0 = E_0/(3*(1-2*nu_0)) 

 

% Elastic properties - inclusion 

E_f =  72.4    

nu_f = 0.2   

mu_f = E_f/(2*(1+nu_f)) 

kappa_f = E_f/(3*(1-2*nu_f)) 

 

V_f = 0.0:0.01:1.0;  

for i =1:length(V_f) 

  V0 = 1-V_f(i); 

  kappa_c(i)=1 + V_f(i)/(((3*V0*kappa_0)/(3*kappa_0+4*mu_0))... 

      +(kappa_0/(kappa_f-kappa_0))) 

  mu_c(i)= 1+ 

V_f(i)/((((6/5)*V0*(kappa_0+2*mu_0))/(3*kappa_0+4*mu_0))... 

      +(mu_0/(mu_f-mu_0))) 

   

  % Effective Young's modulus (normalized) 

  E_c(i)= kappa_c(i)*mu_c(i)*(3*kappa_0+mu_0)/... 

      (3*kappa_c(i)*kappa_0+mu_c(i)*mu_0);  

end 

 

plot(V_f,E_c, 'g') 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 
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B.4 Qiu and Weng model 

% Refererence: Qiu and Weng, 1990 

% File name: “mori_tanaka_4.m” 

% 

% This case: One type of inclusion. Includes isotropic and anisotropic 

% material properties. 

% Three geometries:  

% 1) random spherical inclusions 

% 2) random needles (circular fibres) inclusions 

% 3) random thin discs 

%  

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Elastic properties - matrix 

E_0 = 3.12  

nu_0 =  0.35 

mu_0 = E_0/(2*(1+nu_0)) 

kappa_0 = E_0/(3*(1-2*nu_0)) 

 

% Elastic properties - inclusion 

E_f =  386   

nu_f = 0.22  

mu_f = E_f/(2*(1+nu_f)) 

kappa_f = E_f/(3*(1-2*nu_f)) 

 

% Geometry: 

geom = 1  % spherical inclusions 

% geom = 2  % needles inclusions 

%geom = 3  % thin discs 

 

k_1 = kappa_f+(1/3)*mu_f 

l_1 = kappa_f-(2/3)*mu_f 

n_1 = kappa_f+(4/3)*mu_f 

m_1 = mu_f 

p_1 = m_1 

kappa_1 = (1/9)*(4*k_1+4*l_1+n_1) 

mu_1 = (1/3)*(k_1-2*l_1+n_1) 

 

if (geom == 1) 

  % Spherical inclusions 

  mu_s0 = (mu_0/6)*((9*kappa_0+8*mu_0)/(kappa_0+2*mu_0)) 

  kappa_s0 =(4/3)*mu_0  

  a2_1 = (1/27)*power(n_1+l_1-2*k_1,2.0) 
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  V_f = 0.0:0.01:1.0;  

  for i =1:length(V_f) 

    V0 = 1.0-V_f(i); 

    kappa_c(i)=(1/((V0/(kappa_s0+kappa_0))+... 

 (V_f(i)/(kappa_s0+kappa_1 -(a2_1/(mu_s0+mu_1)))))-

kappa_s0)/kappa_0;  

    mu_c(i)= (1/((V0/(mu_s0+mu_0))+... 

 (V_f(i)/5)*((1/(mu_s0+mu_1-(a2_1/(kappa_s0+kappa_1))))+... 

 (2/(mu_s0+m_1))+(2/(mu_s0+p_1))))-mu_s0)/mu_0; 

 

    % Effective Young's modulus (normalized) 

    E_c(i)= (kappa_c(i)*mu_c(i)*(3*kappa_0+mu_0))/... 

 (3*kappa_c(i)*kappa_0+mu_c(i)*mu_0); 

  end 

 

elseif (geom == 2) 

  % Needles inclusions 

  V_f = 0.0:0.01:1.0;  

  for i =1:length(V_f) 

    V0 = 1.0-V_f(i); 

    % Voigt bounds: 

    kappa_V = V0*kappa_0+V_f(i)*kappa_1  

    mu_V = V0*mu_0+(V_f(i)/5)*(mu_1+2*m_1+2*p_1) 

    gamma_0 = (mu_0*(kappa_0+(1/3)*mu_0))/(kappa_0+(7/3)*mu_0) 

     

    kappa_c(i) = (kappa_V... 

 -V_f(i)*inv(1-V_f(i)*((2*k_1+l_1-

3*kappa_0)/(3*(k_1+mu_0))))... 

 *(((2*k_1+l_1-3*kappa_0)*(2*k_1+l_1-

3*kappa_V))/(9*(k_1+mu_0))))... 

 /kappa_0 

   

    mu_c(i) = (mu_V ... 

 -(V_f(i)/5)*inv(1-V_f(i)*((k_1-l_1-mu_0)/(15*(k_1+mu_0)))... 

 -(2/5)*V_f(i)*((m_1-mu_0)/(m_1+gamma_0))... 

 -(2/5)*V_f(i)*((p_1-mu_0)/(p_1+mu_0)))... 

 *((((k_1-l_1-mu_0)*(k_1-l_1-mu_V))/(3*(k_1+mu_0)))... 

 +((2*(m_1-mu_0)*(m_1-mu_V))/(m_1+gamma_0))... 

 +((2*(p_1-mu_0)*(p_1-mu_V))/(p_1+mu_0))))/mu_0 

   

    % Effective Young's modulus (normalized) 

    E_c(i)= (kappa_c(i)*mu_c(i)*(3*kappa_0+mu_0))/... 

 (3*kappa_c(i)*kappa_0+mu_c(i)*mu_0);     
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  end  

 

elseif (geom == 3) 

  % Thin discs 

  V_f = 0.0:0.01:0.2;  

  for i =1:length(V_f) 

    V0 = 1.0-V_f(i); 

    % Voigt bounds: 

    kappa_V = V0*kappa_0+V_f(i)*kappa_1  

    mu_V = V0*mu_0+(V_f(i)/5)*(mu_1+2*m_1+2*p_1) 

 

 

    kappa_c(i) = (kappa_V... 

 -V_f(i)*inv(1-V_f(i)*((2*l_1+n_1-3*kappa_0)/(3*n_1)))... 

 *(((n_1+2*l_1-3*kappa_0)*(n_1+2*l_1-  

3*kappa_V))/(9*n_1)))... 

 /kappa_0; 

   

    mu_c(i) = (mu_V ... 

-(V_f(i)/5)*inv(1-2*V_f(i)*((n_1-l_1-2*mu_0)/(15*n_1))... 

 -(2/5)*V_f(i)*((p_1-mu_0)/(p_1)))... 

 *((((n_1-l_1-2*mu_0)*(n_1-l_1-2*mu_V))/(3*n_1))... 

 +((2*(p_1-mu_0)*(p_1-mu_V))/(p_1))))/mu_0; 

   

    % Effective Young's modulus (normalized) 

    E_c(i)= (kappa_c(i)*mu_c(i)*(3*kappa_0+mu_0))/... 

 (3*kappa_c(i)*kappa_0+mu_c(i)*mu_0)     

  end   

end 

 

if (geom ==1) 

  plot(V_f,E_c, 'r') 

elseif (geom == 2) 

  plot(V_f,E_c, 'b') 

elseif (geom == 3) 

  plot(V_f,E_c, 'k') 

end 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 
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B.5 Tandon and Weng 

% Reference: Tandon and Weng, 1984 

% File name: “mori_tanaka_1.m” 

% This case: One type of isotropic inclusion 

% Three geometries: 

% 1) aligned spherical inclusions 

% 2) aligned fibre-like inclusions, with a given aspect ratio 

% 3) aligned disc-shaped inclusion with aspect ratio 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Elastic properties - matrix 

E_0 = 2.76  

nu_0 = 0.35 

lambda_0 = (E_0*nu_0)/((1+nu_0)*(1-2*nu_0)) 

mu_0 = E_0/(2*(1+nu_0)) 

 

% Elastic properties - inclusion 

E_f = 72.4  

nu_f = 0.2  

lambda_f = (E_f*nu_f)/((1+nu_f)*(1-2*nu_f)) 

mu_f = E_f/(2*(1+nu_f)) 

 

% Constants (independent of the volume fraction of the inclusion) 

D_1 = 1+ 2*(mu_f-mu_0)/(lambda_f-lambda_0) 

D_2 = (lambda_0+2*mu_0)/(lambda_f-lambda_0) 

D_3 = lambda_0/(lambda_f-lambda_0)  

 

% Eshelby tensor (using engineering strains) 

S = zeros(6,6); 

 

% Geometry: 

geom = 1  % spherical inclusions 

%geom = 2  % fibre-like inclusions 

%geom = 3  % disc-shaped inclusions 

 

if (geom == 1) 

  % Spherical inclusions: 

  S_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  S_2222 = S_1111 

  S_3333 = S_1111 

  S_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  S_2211 = S_1122 



 
  
  

 

FFI-rapport 2015/00494 63   
 

  S_2233 = S_1122 

  S_3311 = S_1122 

  S_1212 = (4-5*nu_0)/(15*(1-nu_0))  

  S_2323 = S_1212 

  S_3131 = S_1212 

   

elseif (geom == 2) 

  % Fiber-like inclusions: 

  l = 100     % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

 

elseif (geom == 3) 

  % Disc-shaped inclusions 

  l = 0.1     % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  S_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 
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  S_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  S_3333 = S_2222; 

  S_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  S_3322 = S_2233; 

  S_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  S_3311 = S_2211; 

  S_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  S_1133 = S_1122; 

  S_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  S_3232 = S_2323; 

  S_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  S_1313 = S_1212; 

end  

   

V_f = 0.0:0.01:1.0;  

for i =1:length(V_f) 

  % Constants 

  B_1 = V_f(i)*D_1 + D_2 + (1-V_f(i))*(D_1*S_1111 + 2*S_2211); 

  B_2 = V_f(i)+ D_3 + (1-V_f(i))*(D_1*S_1122 + S_2222 + S_2233); 

  B_3 = V_f(i)+ D_3 + (1-V_f(i))*(S_1111 + (1+D_1)*S_2211); 

  B_4 = V_f(i)*D_1 + D_2 + (1-V_f(i))*(S_1122+ D_1*S_2222 + S_2233); 

  B_5 = V_f(i) + D_3 + (1-V_f(i))*(S_1122 + S_2222 + D_1*S_2233); 

   

  A_1 = D_1*(B_4+B_5)-2*B_2; 

  A_2 = (1+D_1)*B_2-(B_4+B_5); 

  A = 2*B_2*B_3-B_1*(B_4+B_5); 

   

  % Effective Young's modulus (normalized) 

  E_11(i)=A/(A+V_f(i)*(A_1+2*nu_0*A_2)) 

end 

 
if (geom ==1) 

  plot(V_f,E_11) 

elseif (geom == 2) 

  plot(V_f,E_11,'r') 

elseif (geom == 3) 

  plot(V_f,E_11, 'k') 

end 

   

xlabel ('V_f') 

ylabel('E_[22]/E_m') 



 
  
  

 

FFI-rapport 2015/00494 65   
 

References 
 

 [1]  B. H. Cipriano, A. K. Kota, A. L. Gershon, C. J. Laskowski, T. Kashiwagi, H. A. Bruck, 
and S. R. Raghavan, "Conductivity enhancement of carbon nanotube and nanofiber-based 
polymer nanocomposites by melt annealing," Polymer, vol. 49, no. 22, pp. 4846-4851, 
2008. 

 [2]  B. D. Agarwal, L. J. Broutman, and K. Chandrashekhara, Analysis and performance of 
fiber composites, 3rd ed John Wiley&Sons, Inc., 2006. 

 [3]  J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, "Small but strong: A review of the 
mechanical properties of carbon nanotube-polymer composites," Carbon, vol. 44, no. 9, pp. 
1624-1652, 2006. 

 [4]  G. M. Odegard, T. C. Clancy, and T. S. Gates, "Modeling of the mechanical properties of 
nanoparticle/polymer composites," Polymer, vol. 46, no. 2, pp. 553-562, 2005. 

 [5]  F. Fisher and L. C. Brinson, "Nanomechanics of nanoreinforced polymers," in Handbook of 
theoretical and computational nanotechnology: Functional nanomaterials, nanoparticles, 
and polymer design. M. Rieth and W. Schommers, Eds. American Scientific Publishers, 
2006, pp. 253-360. 

 [6]  T. Thorvaldsen, "A model study of the effective Young's modulus for randomly distributed 
short-fiber composites," FFI report 2011/00212 (Ugradert), 2011. 

 [7]  T. Thorvaldsen, B. B. Johnsen, and H. Osnes, "Modelling of nanofibre composites," 
Proceedings of the "14th European Conference on Composite Materials", 2010. 

 [8]  T. Thorvaldsen, "Modelling the elastic stiffness of nanocomposites using three-phase 
models," FFI report 2005/00534 (Ugradert), 2015. 

 [9]  T. Thorvaldsen, "Modelling the elastic stiffness of nanocomposites using interphase 
models," Forsvarets forskningsinstitutt, FFI report 2015/00608, 2015. 

[10]  J. D. Eshelby, "The determination of the elastic field of an ellipsoidal inclusion, and related 
problems," Proceedings of the Royal Society of London, vol. A241, no. 1226, pp. 376-396, 
1957. 

[11]  J. D. Eshelby, "Elastic inclusions and inhomogeneities," in Progress in Solid Mechanics, 
2nd ed. I. N. Sneddon and R. Hill, Eds. Amsterdam: North-Holland, 1961, pp. 89-140. 

[12]  C. Weinberger, W. Cai, and D. Barnett, "Lecture notes - Elasticity of microscopic 
structures," Standford University,ME340B, 2004. 

[13]  G. P. Tandon and G. J. Weng, "The effect of aspect ratio of inclusions on the elastic 
properties of unidirectionally aligned composites," Polymer Composites, vol. 5, no. 4, pp. 
327-333, 1984. 

[14]  G. P. Tandon and G. J. Weng, "Average stress in the matrix and effective moduli of 
randomly oriented composites," Composites Science and Technology, vol. 27, no. 2, pp. 
111-132, 1986. 

[15]  T. Mori and K. Tanaka, "Average stress in matrix and average elastic energy of materials 
with misfitting inclusions," Acta Metallurgica, vol. 21, no. 5, pp. 571-574, 1973. 



 
  
  
 

 66 FFI-rapport 2015/00494 

 

[16]  I. M. Daniel and O. Ishai, Engineering mechanics of composite materials, 2nd ed Oxford 
University Press, Inc., 2006. 

[17]  G. J. Weng, "Some elastic properties of reinforced solids, with special reference to isotropic 
ones containing spherical inclusions," International Journal of Enginering Science, vol. 22, 
no. 7, pp. 845-856, 1984. 

[18]  Y. P. Qiu and G. J. Weng, "On the application of Mori-Tanaka's theory involving 
transversely isotropic spheroidal inclusions," International Journal of Enginering Science, 
vol. 28, no. 11, pp. 1121-1137, 1990. 

[19]  B. B. Johnsen, T. R. Frømyr, T. Thorvaldsen, and T. Olsen, "Preparation and 
characterisation of epoxy/alumina polymer nanocomposites," Composite Interfaces, vol. 20, 
no. 9, pp. 721-740, 2013. 

[20]  B. B. Johnsen, A. J. Kinloch, R. D. Mohammed, A. C. Taylor, and S. Sprenger, 
"Toughening mechanisms of nanoparticle-modified epoxy polymers," Polymer, vol. 48, no. 
2, pp. 530-541, 2007. 

[21]  M. M. Gudarzi and F. Sharif, "Enhancement of dispersion and bonding of graphene-
polymer through wet transfer of functionalized graphene oxide," Polymer Letters, vol. 6, 
no. 12, pp. 1017-1031, 2012. 

[22]  J. D. Fidelus, E. Wiesel, F. H. Gojny, K. Schulte, and H. D. Wagner, "Thermo-mechanical 
properties of randomly oriented carbon/epoxy nanocomposites," Composites: Part A, vol. 
36, no. 11, pp. 1555-1561, 2005. 

 
 


	Contents
	1 Introduction
	2 Eshelby tensor
	3 General derivation of the Mori-Tanaka method for ellipsoidal inclusions
	3.1 Tensor notation
	3.1.1 Orientationally-averaged fourth-order tensors

	3.2 Vector-matrix notation

	4 Specialized expression for the elastic stiffness of nanocomposites
	4.1 Spherical inclusions
	4.1.1 Spheres with isotropic material properties
	4.1.2 Spheres with anisotropic material properties

	4.2 Unidirectionally aligned spheroidal inclusions
	4.2.1 Tandon and Weng model

	4.3 Randomly oriented spheroidal inclusions
	4.3.1 Tandon and Weng model
	4.3.2 Qiu and Weng model


	5 Nanoparticle/epoxy composite systems
	6 Comparison of model results
	6.1 Spherical inclusions
	6.2 Fibre-like inclusions
	6.2.1 Aligned inclusions
	6.2.2 Randomly oriented inclusions

	6.3 Disc shaped inclusions
	6.3.1 Aligned
	6.3.2 Randomly oriented
	6.3.2.1 Qiu and Weng model
	6.3.2.2 The general Mori-Tanaka model 


	6.4 Needles
	6.4.1 Randomly oriented


	7 Comparison with experimental data
	7.1 Alumina/epoxy composite
	7.1.1 Spherical inclusions
	7.1.2 Fibre-like inclusions
	7.1.2.1 Aspect ratio


	7.2 Silica/epoxy composites
	7.3 Graphene oxide/epoxy composites

	8 Summary
	Acknowledgements
	Appendix A Model summary
	Appendix B Matlab code
	B.1 General Mori-Tanaka model for aligned inclusions
	B.2 General Mori-Tanaka model for randomly oriented inclusions
	B.3 Weng model
	B.4 Qiu and Weng model
	B.5 Tandon and Weng


	References
	Tom side

